
COMMODORE

TCL PASCAL
FOR CBM

Users’ Manual

© 1979/80 - Transam Components Limited

All rights reserved - June 1980

TCL Pascal Zzcommodore

COMPUTER

Copyright
The materials on this diskette and in the manual are copyrighted by
Transam Components Limited. Copying for resale or exchange is
illegal and is strictly forbidden except for security copies of the
diskette for use by the original purchaser only.

Warning

Although programs are tested by Commodore before release, no claim
is made concerning the accuracy of this Software. Commodore and its
distributors cannot assume liability or responsibility for any loss
or damage arising from the use of these programs, and programs are
sold only on the basis of this understanding. Individual
applications should be thoroughly tested before implementation, as
programs are standardized in order to offer low cost Software, and
therefore may not necessarily fulfill a particular requirement. You
are advised to consult your Business Software Dealer for
installation, maintenance, and training costs, should you require
these services. Any changes to the Software not recommended by
Commodore may lead to the withdrawal of support services.

Hardware Support
You are advised to seek a Field Maintenance contract with your
dealer before implementing this package.

Program Security ROMs
This program is accompanied by a Commodore Program Security ROM.
The end-user need not concern himself with this, as it will already
have been installed in his machine by his Commodore Dealer before
delivery of the Software is completed.

For the information of the dealer, however, this ROM must be placed
in the middle (AQO0-AFFF -hexadecimal) open ROM slot of the three
normally available on the 32K CBM logic board assembly. This ROM

must always be installed by the dealership, and not by the end-user.

NOTE .
This manual was prepared, edited, and typed by the COMWORDPRO III
program product. ,

TCL Pascal Fcommodore

COMPUTER

Diskette Care
Mini-diskettes appear to be reasonably tough, but are in fact very
delicate and require careful handling. They must at all times be
either in a disk drive or in their protective envelope. Diskettes
left lying about stand a very good chance of never functioning
again.

The magnetic surface should never be touched - note that contrary to
popular belief, programs and data are recorded on the UNDERSIDE of
the diskette.

The environment of the diskettes should not have a temperature below
10 C (50 F), or above 52 C (125 F).
The diskette should never be bent or flexed.
Insertion of a diskette into a drive should always be done in a
gentle, cautious manner.

Diskettes should always be kept away from all magnetic fields (e.g.
Electric motors, high current cables, etc...).

Initiali .

Users may sometimes note difficulties in initializing diskettes - in

that the middle error light (L.E.D.) may go on. This problem is
most frequentiy caused by corruption of the diskette, due to lack of

proper care when handling it. On very early Commodore disk drives,

however, this also occasionally happens due to improper alignment of

the diskette within the drive. The recommended procedure in this

event is to leave the door or flap of the disk drive open, closing

it only when the initialize function has actually selected the drive

and lighted the L.E.D.

TCL Pascal Zzcommodore

COMPUTER

CONTENTS

i. Introduction to TCL Pascal 8

il, Beginner's Guide to Pascal 11

1. Getting Started 11

WRITE statements, string 12
Integer arithmetic. +,-,#,DIV,MOD 13
Functions: ABS, SQR, ODD 14
Boolean expressions >,<,>=,<=,<6>,=,AND,OR,NOT 15

Cs Pascal Statements 17

Variables and assignment statements 18
FOR statement 18
IF statement 19
REPEAT and READ statements 19
CASE statement 21
Error messages and error correction 22
WHILE statement 24

3. More Variable Types 25

Real numbers 25

Real arithmetic. /, SQRT, SIN, ARCTAN, LN,
EXP, ROUND, TRUNC. 25
Output formatting and constants 26
Characters 27
CBM graphics 27
Arrays 28
Enumerated types and subranges ORD, PRED, SUCC 29
Sets 30

y Procedures And Functions 32

Procedures 32

VAR parameters 33
Functions 33
Recursion 34
Textfiles 34
Strings 36

TCL Pascal Cx commodore

Q2.__Advanced Features 38

Records 38
Pointers and lists 39
GOTO statement HY
Extensions 44

6. Disk-based Operation 42

7. Editor Command Summary yy

8, Error Messages 51

9. Sample Programs 54

Til, ICL Pascal Reference Manual 59

i. £-™General 59

1.1 Pascal keywords 59

1.2 Pascal Identifiers 59
1.3 Other Special Symbols 60
1.4 Comments 60

1.5 Constants 60
integer 60
real 60
character and string 61

1.6 Blanks 61

e._Data Types and Qperators 62

2.1 Integer 62
2.2 Real 62
2.3 Char 63
2.4 User-defined (enumerated) Types 63
2.5 Subrange Types 64
2.6 Boolean 64

2.7 Operator Precedence 64
2.8 Summary of Arithmetic

and Conversion Functions 66

TCL Pascal

3. Pascal Declarations ang statements 67

4

Pascal Programs
-1 Constant Declarations
Type Declarations
Variable Declarations
Executable Statements
Assignment Statements
Compound Statements
"If" Statements
"Repeat" Statements

. "While™ Statements
-10 "For" Statements

3-11 "Case" Statements
3.12 "Goto" Statements

label declarations

.
»

«©
6

.
.

WO
O
N

D
M
N

£
w
W
w

Ay
—

a

W
W
W

Ww
W
W

Ww
Ww
W
w

ww

Input and Output of Text

Outputting to Textfiles
Inputting from Textfiles
Reading Other Data Types
Writing Other Data Types
Abbreviations
Manipulating Files F

r
r
r
e

e
8

8
6

N
m

E
w
h
y

=

Structured Data Types

Arrays

Sets

Records

Packed Structures

Pack and Unpack N
o
n
n
y

*
6

©
8

-

OM
F
w

ry

Functions and Procedures

Parameters

Local Declarations

D
A
N
N

AD

MN
F
w
h
y
 —

Dynamic Storage and Pointers

7.1 Pointers

7.2 "New™ and "Dispose"

73

from Textfiles

to Textfiles

TT

82

Function and Procedure Definitions
Procedure and Function Calls

Recursion and Forward References

87

xcommodore

COMPUTER

67
67
68
68
68
69

69
70
70
70
71
71
Te

73
73
74
74
75
76

TT
78
79
80
81

82
82

83

86

87
87

8, Disk Files

C
O
C
O

OO

O
O
o

OM
W
P

—

TCL Pasca’.

Declarations

Sequential Writing
Sequential Reading

External Files
Reading and Writing from other Devices

Disk textfile example

9, Extensions to Standard Pascal 93

O
W
W
O
W
O
W
O
W
W
O
W
O

W
W
W
 -1

-2

-3
4

“5
6
-T
8

-9
-1
21

Hexadecimal Constants
Memory VDU and port access
Hexadecimal Input and Output
Bit Manipulation
Catching I/O Errors
Keyboard Interrupts
Random Number Generator
Underscore
The CPM Internal Clock

0 Input of String Variables
1 Program Chaining

10, CBM Pascal Interface Guide 99

10.1 Assembly Language Format
10.2 Storage Formats

89

Cz commodore

COMPUTER

89
89
90
90
91
91

93

94
95
95

96
96
96
97
97

99
100

TCL Pascal = commodore

COMPUTER

lL. Introduction to ICL Pascal by Keith Frewin of 1

PASCAL is a powerful high level computer language written by Niklaus
Wirth of Zurich, Switzerland. *

It can be efficiently implemented on small computers as well as
large mainframes, offering numerous advantages over other popular
microcomputer languages such as BASIC.
Some of these advantages are:

ALGOL-like block structure

Meaningful variable names

Powerful data structuring techniques

User-defined data types and constants

Excellent function and subroutine linkage

Recursive calls

Clean, modern flow of control

Runtime error checking

Dynamic variable allocation

Greater standardisation

High speed of execution

Greater program legibility

TCL Pascal is an implementation of standard PASCAL designed
Specially for small computers with as little as 32K bytes of memory.
It offers all the features of this powerful language together with
some useful enhancements for the personal computer user.

The CBM version has two modes of operation. In the Simplest mode the
Pascal compiler co-resides in RAM with the user's progran. This is
ideal for learning the language or writing small Programs which do
not need the disk. Most Pascal commands are available in this mode
except those involving diskette files. For more complex programs
the disk-based compiler can be used to give the full power of the
language.

* PASCAL USER MANUAL AND REPORT BY JENSEN AND WIRTH
--~-~Springer-Verlag 1975

TCL Pascal xcommodore

COMPUTER

Hardware requirements

CBM Professional computer with 32K RAM and BASIC 2.0, plus a model
3040 floppy disk unit with DOS 1.0.

i in We)

MAXINT = 32767

type INTEGER = -32768...32767

type CHAR = the ASCII set (Extended to include CBM graphics)

set values: must be in 0..127(therefore set of char must be between

ehr(0)..chr(127))

real numbers: accuracy:9 digits

range: approx 1E~38 to 1E38

default output formats: integer : 7 characters

, real : 12 characters

boolean : 6 characters

char : 1 character

string : size of string

program size and complexity: No restriction, apart from exceeding

the total memory capacity of the system (STACK OVERFLOW is printed)

identifiers: first 8 characters must be unique

labels: first 8 digits must be unique

Extensions to standard Pascal

Dynamic specification of filenames

Input of strings

Hexadecimal numbers and hex I/0

Bit manipulation

Machine language interface

Memory and VDU screen access

Run-time I/0 error detection
Random number generator

Program chaining

CBM clock interface

Separate compilation (linking)

TCL Pascal Zcommodore

COMPUTER

PASCAL RAM USAGE

This is automatically optimised to use all available memory

Top of RAM

run time stack

I
Vv

/N

4

dynamic variables

executable code

(p-code)

edited text
400 Hex (

"Stack overflow" is printed when all memory has been exhausted.

10

TCL Pascal x=Ccommodore

COMPUTER

Il Begi ts Gui

This section is a straightforward introduction to some of the
features of Pascal.

1. Getting Started - Write Statements

Turn your computer on. It should be displaying the message.

COMMODORE BASIC ###

31743 BYTES FREE

READY.

To run Pascal, turn the disk unit on, insert the Pascal diskette in
the right-hand drive (drive 0), and then type:

HLOAD "#" BF Og

followed by a carriage return. The computer should reply with:

SEARCHING FOR #

LOADING

READY.

This loads the first program on the diskette into memory, which

should be the Pascal system. Now you just type:

RUN

followed by a carriage return. You should get a clear screen with

the PASCAL SIGN-ON MESSAGE:

TCL Pascal

(cc) Copyright Transam 1980.
loading...

ready.

Modern computers can be very powerful, but they need to be "toid"

what to do by means of PROGRAMS. Computers work in a language of

numbers called MACHINE LANGUAGE, but machine languages are generally

quite difficult for humans to master, and they differ widely

depending on the particular computer you are using.

It's much easier to talk to the computer in a HIGH LEVEL LANGUAGE

such as COBOL or Pascal. These languages somewhat resemble English,

but have stricter rules of grammar to prevent ambiguities.

Pascal was invented by Niklaus Wirth, of Zurich, Switzerland in

11

TCL Paseal zcommodore

COMPUTER

1968. (It is named after the 17th century French mathematician
Blaise Pascal). Pascal is an ideal language for learning to write computer programs. Your Pascal programs are automatically translated by the computer into a machine language which it can
interpret.

Let us start right away with a very simple Programming example:

Example 1

First of all you must enter the Program into the computer memory,
and this is done using the EDITOR.

Type in the first line of the Program, shown below. Follow it with
the carriage return key (referred to in this manual as <return>):

10 begin

20 write ('Hi there !')
30 end.

Having typed in the first line, the editor should automatically
Prompt you with the next line number; which you should not re-type:

20

These line numbers have no significance in Pascal - They are purely
for use by the editor, and they will be assumed in all future
examples. Remember, if you make a mistake in typing the program you
Can correct it by using the screen editing commands INST, DEL,
cursor up, cursor down, cursor left and cursor right, just as in
BASIC. Pressing the DEL key, for example, will erase the last key
you typed. See the CBM User's manual for a complete description.

Now enter the remaining two lines of the Program, being especially
careful about punctuation and spelling, and don't forget that full
stop at the end!

write ('Hi there')

end.

When you have finished, type a blank line (just <return>) to turn
off the line numbers.

All you have to do to run your program is to type

r<return>

If all goes well the computer should reply with something like the
following:

12

TCL Pascal Cz commodore

COMPUTER

Compiling

Program 0 0509

0 error(s)

Compilation complete.

Do not worry about the details, but what is happening is that the
computer is scanning your Program and converting it into a numeric
form which it can efficiently execute. (If you don't get the
message: "0 error(s)", then you probably made a mistake in typing.
You could try typing "new <return>" and Starting again!).
Now the computer should automatically run your program, and print
the message:

Hi there!

Once your program has been compiled, it can be run as many times as
you like by typing:

r<return>

Each time the computer should prins::

Hi there!

Now let us look at the program in more detail. The main body of a
Pascal program is always enclosed between the words BEGIN and END,
the final END must be followed by a full stop. Pascal programs
consist of a sequence of "statements" which are executed
sequentially in the order they are written. Example 1 has one
Statement, a WRITE statement which tells the computer to write
something on the screen, in this case the message "Hi there!". The
object enclosed in the single quotes is called a STRING, and may
contain any sequence of characters except <return>. Also, if a
Single quote is itself to be included in a String, it should be
doubled up, so that the Pascal program

begin

write ('O''Brien''s string')
end.

would cause the message

O'Brien's string

to be printed on the screen.

Example 2

Other things can be printed besides strings. Try the following
program. We will use the same steps as example 1 but we must
remember to erase example 1 r:om the computer memory. So type:

13

TCL Pascal
zZcommodore

COMPUTER

new <return>

now type example 2 into the computer:

begin

write (3 + 4) ;
write (6 - 2 - 4)
end.

followed by

r<return> (to compile and run the program)

When the program is run the computer should print

T 3

Example 2 contains two Statements, which must be separated by a
semicolon. It has examples of INTEGER (whole number) arithmetic.

Now try the next example:

Example 3 multiplication and division

begin

write (6 * 7, 18 div 4, 18 mod 4, -(4 + 2) * 3)
end. “

Se SAGA AS even ba fete Nes Re FREER

The computer should print

42 4 2 -18

In Pascal "*" means multiplication, DIV means integer division (ie
with rounding towards zero), and "18 MOD 4" fives the remainder when
18 is divided by 4.

Note how brackets have been used to change the order of evaluating
~4 + 6, or 2. This is because the computer does multiplications and
divisions before it does additions and subtractions.

Any number of items can be printed using a single WRITE statement,
provided that they are separated by commas.

Example 4 functions

begin

write (sqr (4 + 5), abs (- 44), abs (44), odd (3))
end.

The computer should print

14

TCL Pascal <commodore

COMPUTER

81 yy 44 TRUE

SQR, ABS and ODD are called "functions". There are many different functions in Pascal. ;

SQR, followed by a number in brackets, gives the Square of the number,

ABS gives the absolute value of the number,

ODD (3) is TRUE because 3 is odd.

The last function, ODD, gives a Boolean, or logical result, that is
it can either be TRUE or FALSE. Boolean values are used a lot in
Pascal so let us look at them more closely.

Example 5 Boolean expressions

begin

writeln (true, false, 3 = 3, 3 = 4);
write (3<>4, 5<6, 9 >=10);
end.

Should print:

TRUE FALSE TRUE FALSE

TRUE TRUE FALSE

because: 3 is equal to itself

3 is not equal to 4
ete.

means "equal to"

< means “less than"

> means "greater than"

>= means "greater than or equal to”
<= means "less than or equal to®
<> means "not equal to"

WRITELN is like WRITE but also generates a new line after printing
all the values in brackets.

Example 6 Boolean expressions

These can get a bit complicated, but the computer evaluates them
using the rules of logic.

15

TCL Pascal xCcCommodore

COMPUTER

begin

write ((3 = 3) and (3<5),(3 = 4) or (3>11));
write (not true, not false, not (1 = 2));
end.

Gives the result:

TRUE FALSE FALSE TRUE TRUE

because both (3 = 3) and (3<5) are true, neither (3 = 4) nor (3511) are true, and (1 = 2) is false so not (1 = 2) is true.

"x and y" is TRUE if both x and y are TRUE

"x or y" is TRUE if either x or y (or both) are TRUE

"not x" is TRUE if x is FALSE, and FALSE if x is TRUE

46

TCL Pascal commodore

COMPUTER

2. Pascal statements

First a word about symbols. These are the building blocks of Pascal Programs, and there are three main kinds:

1. Pascal keywords, such as BEGIN and END, which are reserved and
can't be altered by the user. A complete list of these is Ziven in
the reference manual, section 1.1.

2. Special symbols such as . 3 i= .. <> ete.

3. Identifiers, which are names chosen by the user. They can be
any sequence of letters or digits, but must start with a letter.
For example:

i

Henrythe8th
PI

WARNING Identifiers are unique only if they differ in the first 8
characters, so that Henrythe7th and Henrythe8th are the same
identifier in TCL Pascal (and many other implementations).

Upper case letters are equivalent to their lower case counterparts
so that PI, pi and Pi are all synonymous.

Some standard identifiers such as WRITE and WRITELN are predeclared
in every version of Pascal.

These can be redefined by the user, however (in contrast to Pascal
keywords).

AJMPORTANT Pascal symbols can't contain imbedded blanks. "Henry the
8th" is not the same as "Henrythe8th", and "30 000" is not
equivalent to the number 30000. ("30,000" would also be illegal).
Note especially that ": =" cannot be used instead of ":=",

This) aside, spaces, tabs and new lines may occur anywhere in a
Pascal program, and are ignored.

Now we return to some actual examples of Pascal programs.
Indentation is used by putting spaces in front of certain linea.
This is optional, but helps to make the program clearer to humans.

17

TCL Pascal xcommodore

COMPUTER

Example 7 Variables and assignment.

v RSI RL ene eden,
var x,y :integer;
begin

X:233 y:i=27;
writeln (x,y);
x:=4;

Yi=xX+2;

write (x,y, x+y)
end.

Should print:

3 27
4 6 10

The VAR declaration comes before the BEGIN, and informs the compiler
that the identifiers x and y are "variables" which can take integer
values? As the name implies, variables can change in value
throughout the execution of the program. In line 3, the value of x
is set to 3 and the value of y is set to 27. Then later, x is set
to 4 and y is set to x + 2, or 4 + 2 = 6. Notice that y:=y+2 could
also have been written setting y to 27 + 2 = 29. Variables can also
be declared as BOOLEAN and many other types besides INTEGER,

Example 8 repetition using "FOR" loops.

var i :; integer;

begin

writeln ('going up');
for i := 1 to 5 do writeln (i);
writeln ('going down');
for i := 5 downto ~1 do writeln (i);

end.

Should print:

going up

1

WW

&

Ww
Ph

going down

>
O
n

N
W

F
U

A

18

TCL P
ascal Cx commodore

COMPUTER

-1

The statement following the "FOR .. por (in this case a WRITELN Statement) is repeated once with each value of the variable i.

Example 9 "if" statements

var i : integer;
begin

for i:= 1 to 11 do
begin

write (i);
if odd (i) then writeln (' is odd')
else writeln (' is even');

end

end.

The result should be:

is odd

is even

is odd

is even

is odd

is even

is odd

is even

is odd

is even

is odd

—
=
O
O

O
A
N
A

N
M

E
W
P

e
t

"if" statements give the computer a choice of two statements to do,
depending on the value of the Boolean expression. (Remember, Boolean
expressions can either be TRUE or FALSE). The "else" part of af
conditional statement is optional but -~IMPORTANT-- "else" is never
preceded by a semi-colon.

The WRITE and IF statements in our example are enclosed in
BEGIN...END to make them act as a Single statement to be repeated by
the FOR loop.

Example 10 finding the average bon pe ty etn © de TG uf eee |

This example introduces keyboard input, and a more general sort of
loop.

19

TCL Pascal xcommodore

COMPUTER

var total, count, x : integer;
begin

total:=0; count:=0;
write ('Type some numbers:);
repeat

read (x);

total:z=total+x;
if x>0O then count:scount+1;

until x=0;

writeln ('The average is', total/count);
end.

When you run this Program, the computer should invite you to type a
series of numbers. Try typing:

3 47 5 199 O <return>

The computer should reply with

The average is 6.35000E+01

The statement read (x) tells the computer to accept an integer from
the keyboard and place its value in the variable x. If you type
something the computer doesn't recognise as an integer, you might
get the message

INTEGER READ ERROR line 60

and the program will terminate.

The "/" operator gives division with a floating point, or REAL
result (whereas DIV gives an integer result). More about REAL
arithmetic later.

The "real" number was printed in "scientific" notation, which will
be familiar to many calculator users. The number following the "E"
represents a power of 10, so that 6.35E+01 means "6.35 (times 10 to
the power of +1) or 63.5.

The printing format can be changed to make it more legible by
specifying the total number of characters you would like printed and
the number of digits after the decimal point. (Rounding is done
automatically). Thus:

Writeln ('The average 18', total/count : 10 : 3)
Nee a

would have printed AG MiNi Valet a BOR A oe ia.

The average is 63.500

The number is printed with 4 icading dianks to give the 10-character

20

TCL Pascal zcommodore

COMPUTER

field you specified.

The "repeat"™..."until" loop simply executes the enclosed statements until the condition at the end turns out to be TRUE. In our example the loop is terminated when a zero is read from the keyboard,

Example 11 Case statement

This example introduces a Slightly more elaborate way of choosing one of several statements:

var verse, i : integer;
begin

for verse:=1 to 4 do
begin

writeln;
for i := verse downto 0 do
case i of

writeln('three men');
writeln('two men');
writeln('one man');
writeln('and his dog')

5
Oo

—
M
W

C
o
e

oe

t
e

e

end

end.

This should result in the printout:

one man

and his dog

two men

one man

and his dog

three men

two men

one man

and his dog

case error line 70

The error message was caused because in the last verse i becomes 4
and there is no corresponding label in the CASE statement.
Case labels can also be combined, for example

4,5,6 : writeln ('Many men');

21

TCL Pascal xCommodore

COMPUTER

A note on error messages

The "CASE ERROR" message is called a "runtime" error message because it occurs while the Program is actually running. There are several such messages which you may encounter (see section 8).

By now you may have started to experiment with your own programs. (This is probably the best way of finding out what is and is not Possible in Pascal). If SO, you will sooner or later get one of the compiler's error messages. This may also happen if you make a mistake in typing one of the examples. The simple Program

var x : boolean;

x : integer;
begin

read (x);
write (x)

end.

would cause the following message during compilation:

compiling .

~--ERROR TYPE 46 LINE 20 NEAR xX
-.. IDENTIFIER DECLARED TWICE
program 0 050d

1 error(s)
Compilation complete

The error number given was 46. There are over 100 possible errors, and so an appropriate message is selected by the compiler from a disk file (PASCAL ERROR MSG), in this case: "Identifier declared
twice”. Referring to line 20 of the Program, that's exactly what we
have done.

NOTE~--the line number may sometimes be out by 1 line or even more,
depending on how long the compiler needed to detect the error,

Typing "L" in response to the prompt:

ready

displays the program on the VDU as well as compiling it. All the
line numbers and errors are marked. In our example:

22

TCL Paseal

xcommodore

COMPUTER

10 var x :boolean;
20 xX <- ERROR 46

+. IDENTIFIER DECLARED TWICE
20 x :; integer;
30 begin

40 read (x);
50 write (x)
60 end.

The full version of line 20 is retyped underneath the error report.

The computer will not let you run a program if there are any
compiler errors.

rors

This can be done using the editor, without having to retype the
whole program. To correct the small example above you might type:

list

to list the program on the screen:

10 var x : boolean;

20 x : integer;

30 begin

40 read (x);
50 write (x)
60 end.

To delete the second line, type 20 followed by <return>. Typing
"list" again should give:

10 var x : boolean;
30 begin

0 read (x);
50 write (x)
60 end.

Line 10 is still wrong. We want to read and write integer, so we
type

change /boolean/integer/

which makes the substitution and retypes the line.

"list™ now should print the correct version of the program.

23

TCL Pascal

xCcCommodore

COMPUTER

10 var x: integer;
30 begin
40 read (x);
50 write (x)
60 end.

The program doesn't do much, just reads a number from the keyboard and prints it out again.

For a more complete explanation of how the editor works, see the command summary (section 7). This also explains how to load and save your Pascal program on diskette.

While statement

There is another sort of loop in Pascal, besides REPEAT and FOR loops.

The WHILE statement is like the REPEAT statement except that the test is done at the beginning of the loop (so that the loop need not be executed at all). Also, like the FOR loop only one statement may be repeated (or a sequence of statements enclosed in BEGIN and END).

Example:

iis;

while i <= 5 do

begin

writeln (i);
L:=i+l;

end;

Has the same effect as

for i:=1 to 5 do writeln (i);

24

TCL Paseal
=xcommodore

COMPUTER

3. More about data types in Pascal

Example 12 Floating point numbers.

begin

writeln (3.3, 33.0, 330.0, 0.33);
writeln (-3.3E3, 3.3E-1, 4.542.1)

end.

The computer should print

3-30000E+00 3.30000E+01 3.30000E+02 3.30000E-01
-3.30000E+03 3.30000E-01 6.60000E+00

The presence of either a decimal point or an exponent (the "E" part)
in a number tells Pascal to treat it as a floating point or a REAL
number.

3.3E3 means 3.3 times (10 to the power of 3)
in other words 3.3 x (10x10x10) or 3300

Floating point numbers in Pascal have an accuracy of 9 digits and
may range in size from about 1E-38 to 1E38. In contrast to integer,
you should not expect Pascal real arithmetic to be exact. This
means, for example, that 4.0 may in fact be printed as 3.999999.
Also, you can't rely on testing real numbers for equality. 2.0 + 2.0
= 4.0 may not always be true!

Example 13 floating point arithmetic

var x, y: real;

begin

xX := 9.1;

y := 8.7;

writeln (x+y: 7:2, x-y: 7:2, x®y: 7:2, x/y: 7:2);
writeln (sqr (x) : 7:2, sqrt (x): 7:2, abs (x): 7:2);
write (trune (x), trune (y), round (x), round (y))

end.

Should print:

17 .80 0.40 79.17 1.05

82.81 3.02 9.10
9 8 9 9

We have already met +, -, * and /. They are used to mean addition,

subtraction, multiplication and floating point division (DIV means

integer division. DIV and MOD shouldn't be used with reals).

25

TCL Pascal
=commodore

COMPUTER

SQR (X) means the square of X
SQRT (X) means the square root of Xx
ABS (X) gives the absolute value of x
TRUNC (X) gives the integer (whole number) part of XxX ROUND (X) rounds X to the nearest integer.

Some other useful mathematical functions are

SIN (X) gives the sine of X (X is in radians)
COS (X) gives the cosine of X (X is in radians)
ARCTAN (X) gives the angle whose tangent is X (in radians)
LN (X) gives the natural logarithm (base e) of X (for X > 0) EXP (X) gives the number e raised to the xth power.

1 radian = 57.29578 degrees

e= 2.718281

Example 14% Output formatting, constants.

program waves;

const f1 = 0.5; f2 = 0.05; amplitude = 19;
var x1, x2, y :real;

begin

x1:=0; x2:2=0;

repeat

XT:=x1 4 £1;

x2:=x2 + f2;

y:=sin (x1) ® sin (x2) * amplitude;
writeln ('x': round (y) + amplitude)

until false

end.

The program should print an amplitude - modulated sine wave.

Because of the REPEAT..UNTIL FALSE loop, example 14 will continue
Printing almost forever (at least until x1 or x2 becomes too large!)
One way of stopping it would be to turn off the power, but if you
did that you would lose the program. A better way is simply to press
the STOP key.

The computer should print:

BREAK AT LINE xxxxxx

Where xxxxxx is the line it happened to be executing when you
pressed STOP. (If this doesn't happen, try again)

The "Program" header is optional in TCL Pascal and in this case
Simply serves to give the program a name: WAVES. The name has no
Significance to the computer; it's merely there as an aid to
documentation.

26

TCL Pascal ZEcommodore

COMPUTER

Any text enclosed between the pairs of symbols (* and #) igs also ignored by the compiler. This facility can be used to write comments which help human readers to understand the Program. Constants, introduced by the keyword CONST, are values which don'tt change throughout the program. It is an error to use a constant on the left of an assignment statement or as a Parameter in the READ statement.

"CONST" declarations are useful for giving names to special values
(for example PI = 3-1415926), and they make the Program easier to
change later. Try using the editor to alter the frequencies f1 and
f2 and the amplitude to give different wave patterns in example 14.

Note how the program uses a field width specification (a colon
followed by an integer value) to tell the computer how many
Characters to allocate to the 'x' when printing. If too many
characters are asked for, enough Spaces are printed to make up the
difference. If not enough are asked for, the string is truncated on
the right, for example

write ('Hi there' :5)

would print:

Hi th

Numeric values, however, are always printed in full even if too few
Characters are specified.

Example 15 CBM graphics

var line, i: integer;

begin

page;
for line:=1 to 24 do

for i:=1 to 40 do

if odd (line) and odd (i) or
not odd(line) and not odd (i) then write(chr(177))

else write(chr(178))
end.

This should fill the screen with a pattern. CHARACTERS in Pascal are
Strings of length 1, for example:

'™<! 91 tre

They belong to the data type "Char", which has 256 possible values
in TCL Pascal, corresponding to the ASCII character set (see the CBM
user's manual, page A~13).

The function ord (ch) gives the ASCII integer code (between 0 and

27

TCL Pascal xcommodore

COMPUTER

255) for the character ch, while chr (x) gives the character represented by the integer x. So ord ('?')=63 and correspondingly chr(63)='?7',

NOTE - On the CBM, the TCL Pascal data type "char" has been extended to the range 0..255 to allow the CBM graphics font to be used. Two of these characters were used in the Program above. Try writing Programs to give different Patterns, using the available Characters. A simple change would be replacing 177 and 178 by 173 and 174. The Statement "page" Simply clears the vdu screen.

Example 16 Arrays

Suppose you wanted to read in some numbers and Print them out in reverse order. You would have to store the numbers somewhere because you can't start printing until the last number has been read. If you knew that there were always going to be three values, you could write:

var xl, x2, x3 :integer;
begin

write ('Type 3 numbers : ');
read (x1, x2, x3);
writeln (x3);
writeln (x2);
writeln (x1)

end.

But for 50 values this would get a bit tedious!

The answer is to use an array variable:

const n=3;

var x : array [1..n] of integer;
i: integer;

begin

write ('Type ', n:1, ' numbers: ');
for i:=1 to n do read (xfi]);
for i:=n downto 1 do writeln (x[i])

end.

Running the program and typing the data:

46 3 79 980

Should give the result:

980

T9
463

28

TCL Pascal x<commodore

COMPUTER

The declaration of x really declares yn variables which can be referred to by giving an index in Square brackets. The elements of the array x are thus xl1], x{2], oeee, XEn].

The constant n was used so that the number of values read in by the Program can easily be changed by altering just one line.

Array elements can be any valid Pascal data type, including another array. This allows two dimensional (or indeed any dimensional) arrays, and a chessboard for example may be represented as:

var chessboard: array {[1..8] of array [1..8] of chesspiece;

Where chesspiece is Some suitable data type, probably a user defined type (more about this later). The 5th square of the 3rd row of the chessboard could then be referred to as:

Chessboard [3] [5]

Because arrays of arrays are used often in Pascal programs, the abbreviation "chessboard [3,5] " is allowed, and Similarly in the declaration:

var chessboard : array {1..8, 1..8] of chesspiece;

This can be extended to arrays of any dimension.

Defining your own data type

None of the data types so far mentioned (integer, real, boolean, or even char) would be really suitable for describing a piece on a chessboard, so Pascal lets you define your own. This may be done in a TYPE DECLARATION, for example:

type chesspiece = (pawn, knight, bishop, rook, queen, King);

Then a variable of type CHESSPIECE could take any of these six values, for example:

var mypiece, yourpiece:chesspiece
begin

my piece:=rook;
yourpiece:=queen;

Type declarations come after constant declarations and before variable declarations. The identifiers used in an ‘enumerated' data type like CHESSPIECE must be unique, they can'tt appear in other enumerated types or be declared as constants or variables,

29

TCL P
ascal Cc commodore

COMPUTER

Enumerated types are ordered So that our chess pieces can be compared using =, > etc:

king>queen
queen>rook

and so on:

Three functions are also defined: PRED, SUCC and ORD

pred (x) gives the value Preceeding x.

succe (x) gives the value Succeeding x.

ord (x) gives the position of x within the data type.
(starting with pawn = 0)

so pred (bishop) = knight

suce (rook) = queen

but pred (pawn) and suce(king) are both meaningless

ord (knight) = 4

ord (rook) = 3, and so on.

Example 17 The sieve of Eratosthenes,

This program finds and prints all the prime numbers between 2 and 127.

Program Eratosthenes;
const n=127;
var sieve : set of 2..N;

number, i: integer;
begin

Sieve := [2..n];
for number := 2 to n do if number in sieve then
begin

writeln (number);
for i := 2 to n div number do

sieve := sieve - [i*number]
end

end.

A prime number is divisible only by itself and 1. Our "sieve" used for finding the Prime numbers, is a new type of variable called a SET variable.

Sets in Pascal are collections of objects enclosed in square

30

TCL P
ascal Cz commodore

COMPUTER

brackets. Either an object is ina Set or it is not, so

(1,2,3]
[2,3,1]

and [1,1,3,3,2] are all equivalent.

The abbreviation X.-yY in a set means all the items between xX and y inclusive, so

C1..4, 10] = C1,2,3,4, 10]

We can test whether an item is ina set by using the Operator IN. Thus "4 in [1..5]" will give the Boolean result: TRUE.

The type of a set can be any scalar type (ie not an array or a set) except REAL. Values are restricted to the range 0..127 (s0 "set of Char" from ehr(0) to chr(127)) is acceptable).

Now back to our Sieve program. Starting with the number 2 and working upwards, if a number is still in the sieve then it's a Prime. We simply eliminate all multiples of that number from the sieve because they are not prime, Operations allowed on two sets x and y are:

x + y which gives the set of all items present in either x or
y or both.

x - y which gives all items in x which are not also in y.

x * y gives all items present in x and also present in y.

x = y tests if two sets are equal.

x<>y tests if two sets are not equal.

x<sy tests if all items in x are also in y.

X>=sy tests if all items in y are also in x.

31

TCL P
ascal C= Commodore

COMPUTER

4a, Procedures and Functions

Example rocedure

var ch: char;
- Procedure lineor (wotsit :char);

var i: integer;
begin

for i:sl to 30 do write (wotsit); writeln
end; (* of procedure "lineor™ #) begin (* of main Program #)
lineof (121);
writeln;
for ch:= 'at to tr do lineof (ch) end.

you don't need to type the comments (# ---*) if you don't want to.
These are there to help explain the program.

The computer Should print:

aaaaaa ... ee.
bbbbbb,
eecece . eee ee,
dddddd,
eeeece ..e . eek,
Prerrfe see,

Procedures are used to separate Sections of code from the main Program, either to make what the Program does clearer by dividing it up functionally, Or to allow the same code to be "calleqn from various parts of the Program. The procedure "lineof"™ has a PARAMETER "wotsit"™ (which takes the data type CHAR). When lineof is called it must be followed by a Corresponding actual Parameter in brackets. Then "lineorn Simply writes a line of wotsit's on the screen,
If a procedure has NO Parameter then the brackets are Omitted, The Variable I is "local" to the Procedure lineof, the main program doesn't know about it. However lineor could if necessary access the "Zlobal' variable CH. Using local variables helps conserve storage, Since they are destroyed when the Procedure finishes, Procedures are really Mini-programs in their own right. They can have their own constant and data type declarations and even their own Procedures,

"WOTSIT" is calied a VALUE parameter because a value is Substituted for it when the procedure is called. Lineof could change the value of wotsit withour affecting the main Program. VARIABLE parameters on

32

TC L Pascal C= commodore
COMPUTER

called.

Example 19 Variable Parameters

var x,y :integer;
Procedure swap (var a,b: integer); var temp: integer;

begin

temp:za;
a:=b;

b:=temp
end;

begin

K:=45 yi=77;
writeln (x,y);
Swap (x,y);
writeln (x,y)

end.

This should give the result

Note that it is alright to have local variables, constants and Parameters with the same names used in the main program. For example
Procedure swap (var X,y : integer);

The computer won't get confused (but you might!). The variable Parameters a and b are used by SWAP as a means of returning a resuit to the main Program. Another way of returning a value is to define a function, ‘

Example 20 Defining a function

var i : integer;
function cube (x : integer) : integer;

begin

cube := x#x#x;
end;

begin
for i:= 1 to 20 do writeln ('The cube of ',

i: 2,' is', eube (i)) end.

The program should print some numbers and their cubes, Apart from having to Specify a return value, functions are just like procedures,

TCL
Pascal C= Commodore

COMPUTER
Example 2] Recursion

A recursive function opr Procedure is one that ealls itself, Using
recursion can give neat Solutions to mind-bending Problems like the
"Towers of Hanoi™. In this well known puzzle, there are three piles
of dises. To start with piles 2 and 3 are empty, and the first pile
has a number of dises stacked in order of Size, smallest at the top.
The game is to get all the discs in ‘he same order (smallest on top)
Ovér to the 3rd bile, moving Only one at a time, with no dise ever
resting on a Smalier disc,

Program Hanoi;
var ndisces: integer;
Procedure move (source, destn, spare: 1..3; niinteger); begin

if n>1 then move (source, Spare, destn, n-1); writeln("Moving from', source : é, ' to ', destn : 2); if n>1 then move (spare, destn, source, n-1) end;

begin

write ('How many discs ?);
read (ndiscs);
writeln;
move (1,3,2,ndises)

end.

Moving one disc is trivial. To move yn discs we first move the top (n-1) to the spare Pile and then move the bottom one. Then the top (n-~1) are moved using the same technique,

Recursive Programs are not always the most efficient, though. They tend to gobble up memory because the Computer has to save the variables for each call on the stack, If you make ndises too large the computer will run out of memory and print STACK OVERFLOW ~~ line XXxx. The same will happen if you declare more variables in a Program than you have memory available, or if you try to compile too large a program.

Text Files

Text files are Sbdecial Pascal variables having the data type TEXT which are essentially streams of characters with no fixed size. Two are preassigned in +-FFET Pascal. "Input" and "output" are associated normally with the Keyboard and the vDU display resr*ctively.

By default, "Input" is implied in READ, READLN, EOLN and EOF and "Output" is implied in WRITE, WRITELN and PAGE. So for example,

34

T CL Pascal
Cz commodore

COMPUTER

EOF is really short for EOF (INPUT) WRITELN ('Hit!) is really short for WRITELN (OUTPUT, "Hilt)
Each textfile has an associated buffer variable of type CHAR (the
file name followed by an upward arrow), for example: inputt
The procedure call:

get (input) reads the next character from the keyboard and puts it
in the variable input

Put (output) writes the contents of output t to the vbuU. So if X is
a character variable:

read (x) is equivalent to x :sinputt; get (input) write (x) is equivalent to Outputt :=x; put (output)
Newlines are Special characters in textfiles. When a file buffer contains one, asSignments like

X := input}

will set x to a Space. Also, the end of line function EOLN will return TRUE.

READLN is like READ but afterwards skips to the beginning of the next line by doing:

while not eoln do get (input);
get (input);

This is awkward for interactive Programs because the next line of input must be typed before the Program can Proceed, since input? is Supposed to contain the first character of the next line. It's better to use READ and skip any leading spaces before you read the next value. (This is done when reading numeric values anyway).

Initially when the Program is run, inputt contains the newline you typed at the end of the "RUN" command.

35

TCL Pascal Cz commodore
COMPUTER

Example 22 strings

Program revwords;
const linesize = 64;
type string=packed array {1..LINESIZE] of char; var word:string;

nchars, i sinteger;

Procedure Skipblanks;
begin while (inputt = 1 ') and not eoln do get (input) end;

Procedure swap (var S:string;i,j:integer); var temp:char;
begin

temp:=S[i];

SCi]:=S(jl;
SC jl:=temp

end;

begin

repeat if eoln then readin;
skipblanks;

while not eoln do
begin

nchars:=0;

repeat

nchars:=nchars+1;

read (word Cnchars]);
until inputt = | ts;
for i:=1 to nehars div 2 do

Swap (word,i,nchars -i+1);
write (word:nchars, rot)

end;

writeln;
until false

end.

The Program reads words and writes them out with the letters reversed. For example:

Mary had a little lamb <return>

would print,

yraM dah a elttil bmal

To stop the Program, hit <stop>.

Strings of size n in Pascal are treated as "packed array [l..n] of char". Packed arrays are like Ordinary arrays but are compressed to

36

TCL Pascal Cz commodore
COMPUTER

optimize Storage, Packed array ELEMENTS VAR - can't be used directly as Parameters (but whole arrays can, as in the example).
Examples of String operations in Paseal:

Var str: packed array [1..4] of char; begin

Str:is'when';
writeln (str>'what')

end.

Would print TRUE because "when" is greater than "what" (Lexographically, i.e. dictionary order).

37

TCL P
ascal Cx commodore

COMPUTER

_A £ es

Example 23 Records

Program clock;
const delay = 950; (#approx. for CBM *) var i:integer;

Clock: record
hrs: 0..23;
mins, secs 70..59;

end;
begin

write ('Enter the time, in hours minutes Seconds ;: '); read (clock hrs, clock.mins, clock.secs); with clock do repeat
for i:t= 1 to delay do (*nothing#); secs:=(secs + 1) mod 60;
if secs=0 then
begin

mins:=(mins+1)mod 60;
if mins=0 then

hrs:=(hrs+1)mod 2u;
end;

writeln Carsil,':',mins:1,':',secs:1) until false
end.

The program Should print out the time roughly every second, for example:

Enter the time, in hours minutes seconds : 4 39 56
Should Print:

39 : 57

39 : 58
- 39 : 59
: 40: 0

ete

This example is intended to be a demonstration of the use of records in Pascal, not a replacement for the CBM built-in clock! See the Reference Manual (III.9.9) for how to access the CBM clock,
Records are a way of combining several conceptually related variables into one Structure. The record Can then be treated as a whole or the Parts can be accessed individually using the dot notion.

The WITH..DO Statement tells the computer to treat the elements of

38

TCL Pascal =<cCommodore
COMPUTER

"clock" as though they were locally defined individual variables for that Statement, removing the need for the "clock." prefix.
Record elements Can be any type (for example other records or arrays), and in addition an optional "variantn Part is allowed (see reference manual).

Example 24 Pointers

var p,q: tinteger;
begin

new (p); new (q);
Pt :=3;
qt 3:24;

write (pt,q?)
end.

Should print

3 4

The variables P and q are not integers but ‘pointers! to integer variables. The actual Space for the variables to be Stored at is created "dynamically" (in other words while the Program is running) by the procedure NEW. This allows programs to create variables as required. A major use of Pointers is in processing linked lists:

39

TCL P
ascal

C= Commodore

COMPUTER
Example 25 Reversing a line of Characters using a list

Program revchars;
type itempointep =titen;

item = record
value:char;
next: litempointer

end;
var list,p: itempointer;
begin

list:=znil;

repeat

new (p);
read (pt.value);
Ptenext:slist;

list:sp
until eoln;
repeat

write (p+t.value);
Di=pt.next

until pz=nil
end.

The input: Mary had a little lamb.

Should give the result: bmal elttil a dah yraM

This brogram defines a record containing a Pointer to itself. (A
recursive definition). Linked lists Bive very flexible Storage but
you have to keep careful track of what Points to what.
In standard Pascal the Procedure DISPOSE (P) releases the storage
4SSigned to the Pointer pt and can be used when Pt is no longer
needed.

In CBM Resident Pascal, dispose has no effect. (However, it is
usually possible for Programs themselves to implement Some sort of
"free list" of unwanted items). The Pascal keyword "nil" is ia
Pointer value which points to no variable,

40

TCL Pascal
Cz commodore

COMPUTER
Example 26 "goto" statements

label 294, 33;
begin

33: writeln ('This should be Printed'); goto 294;
writeln ('This Shouldn''tr), 294: writeln ("Stuck in a loop');
Beto 33

end,

This should Print:

This should be printed
Stuck in a loop
This should be printed
Stuck in a loop
ete.

"labels" useq with goto Statements must be integers and Should be
declared before constants, data types and variables. GoTO'sS should
be avoided where possible because they destroy the Structure of the
Program. A common use, however, is for "disaster" exits from nested
Procedures or Statements, Jumping INTO a loop or a Procedure will
cause unpredictable results.

Extensions to standard Pascal
These are described in the Reference Manual (III.10). One useful
Procedure is VDU:

Example 27 "poking" the vdu screen

var i: integer;
begin Page;

for i:=1 to 40 do vdu (i mod 4,i,'x') end.

This should Produce a pattern of x'S on the screen. Vdu (i,j,ch)
stores the character ch at row i, column j.

Remember, PAGE clears the vpbu screen,

4]

commodore

COMPUTER

TCL Pascal cz

isk r

So far this manual has been concerned only with using the resident
compiler, which is always in RAM. While this may provide an ideal
environment for learning Pascal, it necessarily restriets the number
of commands available, and the Space remaining for user programs.

AS you become familiar with Pascal, you will probably want to write
larger programs. Using the disk-based compiler and linker, Pascal
Programs of 3000 lines or more may be run, and this may be extended
even further by using program chaining.

You may also want to write Programs which access diskette files.
While this is possible in resident mode by Opening channels to the
disk unit, in disk mode the full Pascal file Syntax is available,
permitting files of any data type.

Disk mode is entered in the editor by typing:

disk

This removes the resident compiler from memory, making the space
available for editing.

Once your program is edited, it MUST be saved on disk, for example:

put O:prog

Saves it in a file called "prog" on drive 0. To compile the program,
type:

comp prog

The compiler output should be something like:

Pascal compiler v 1.4

(ce) Copyright TCL Software 1980.

program 0 0009

0 error(s)

Compilation complete.

There are various compiler options for generating listings ete. (see
command summary - section 7). If all goes well the compiler will put
the object code ina file "prog.obj" which can then be executed. If
there are any errors during compilation then the Pascal source must
be corrected using the editor and re-~compiled (Use the command "get

prog" tu read your Pascal text back into memory).

Finally, type:

42

TCL Pascal Cz commodore
COMPUTER

ex prog

to execute the object file (prog.obj).

The name of each Procedure or function is Printed out as it is compiled, together with its Static nesting level (0 for the main Program, 1 for outer level funetions and Procedures, and so on). A hexadecimal address is also Printed, giving a rough idea of its relative position in memory

The following table summarises the differences between resident and disk mode:

Resident Mode Disk Mode

Compiler always in RAM Compiler only in RAM during
a compilation

Pascal source and object Source and object code
code in RAM held in disk files

Language differences (see Reference Manual for details):

Textfiles only All file types supported

Disk files fully supported

PACK, UNPACK implemented

DISPOSE is a no-op DISPOSE fully implemented

Program chaining allowed

43

TCL Pascal C= commodore
COMPUTER

ti. Editor command Summary

tne umbers

A command beginning with a number is recognised by the editor as a new program line, and is inserted in the Program text in the position corresponding to that number.

For example:

10 end.

9 begin (* this command comes first *)

A line containing just a number has the effect of deleting that line from the Program.

Auto

Enables or disables automatic generation of line numbers.

Examples:

auto 20 <return> - enables auto numbering with an increment of

re ate <return> - disables auto line numbering.

default - auto 10.

List

Lists the program currently in memory.

Examples: list ~lists entire program
list 330 -lists line 330 only
list 100- -lists lines 100 onwards
list 100-200 -lists lines 100 through 200
list -200 ~lists up to and including line 200

Note: The STOP key pressed during a listing will halt it completely,
while pressing any other Key freezes the listing until a second key
is pressed.

r er

Set upper or lower case display mode (The contents of the program
memory are unaffected). Default : lower.

yy

c
TCL Pascal xcommodore

COMPUTER

Basic

Return to BASIC, reverting to uppercase display. To re-load Pascal
type : tPASCAL <return>.

Break

Enter the machine language monitor by executing a BRK instruction.
(X command returns to PASCAL).

New

Erase the program memory.

Disk

Overwrite resident compiler, allowing larger programs to be edited,
and permitting use of the disk based commands (COMP, EX, LINK).

Resident

Re-load the resident compiler, reversing the action of "disk". (If
there is insufficient memory you may have to delete some or all of
your program first).

Number

Renumber the program lines in memory.
for example:

number 1000,2000,30

renumbers lines 1000 onwards, starting the new numbers at 2000 and
with an increment of 30.

Note that the new starting number must be greater than or equal to
the old starting number.

Find

Find and print occurrences of a string in the progran.

find /function/ -finds all occurrences of "function"

find /function/,100~250 - finds all occurrences in lines 100
through 250.

The "/" can in fact be any delimiting character not contained in the
search string.

See note under "list" command to halt execution.

45

TCL Pascal Cx commodore
COMPUTER

Change

As find, but substitutes a second string for all occurrences found of the first. For example:

change /function/procedure/,150

Changes all occurrences of "function" in line 150 to "procedure*®,

See note under "list" to halt command execution.

Delete

Deletes program lines (parameters as with LIST). "Delete" with no Parameter is equivalent to NEW.

Put

Saves the Program on diskette. For example:

put O:sara -saves in a file called "SARA" on drive 0. (drive 0 must be initialised).

put @1:jim -saves in an existing file called "JIM" on disk 1.
(drive 1 must be initialised).

Note: the drive must be specified.

Reads a program from diskette. For example

get sara (searches both disks if required).
get 1l:jin

R Cor Run) (Resident mode only).

Run the program in memory (compiling first if necessary).

L (Resident mode) - compile, and display the Program on the VDU.

P (Resident mode) - compile and list on the printer.

COMP (Disk mode) - compile a program

cOmp Sara - compiles file "sara" giving a relocatable object file
"QO:SARA.OBJ"

comp sara,l -~ the "1" option gives a listing on the VDU.

Other options: P - list on printer

46

TCL Pascal <commodore

COMPUTER

N - no object code
C - no range checking or line numbers in the object file (giving Slightly faster and more compact code)
1 - object file on drive 1

Ex (Disk mode) ~ execute an object file

ex Sara - executes SARA.OBJ

Note - COMP and EX both clear the text buffer.

Hex convert from decimal to hexadecimal.

hex 32 <return> gives the result 0020

Decimal convert from hexadecimal to decimal.

decimal 7f <return> fives the result 127

BASIC commands

Any of the BASIC direct-mode commands below may be used in the
editor:

PRINT (or ?)
PRINT#
OPEN

CLOSE
CMD

POKE

SsYS

FOR

LET

examples:

let ti$ = "120000" - set clock to mid-day
?ti$ - print the time
?fre (0) - print the number of bytes free
for i=1 to 20: ?1, ifi: next i

In addition,

>
>$0
>$1
>sO: penny

tas

the usual DOS Support commands are allowed:

~gives disk status

-~gives directory listing of drive 0
~gives directory listing of drive 1
-deletes file "0: PENNY"
-~loads and runs file AS

47

TCL Pascal <commodore

COMPUTER

/as ~loads the file AS (without running it)
etc.

Link (disk mode)

For large programs it is desirable, (and often Physically necessary) to have some form of modularization. Several Pascal Source files with inter dependent funetions and Procedures may be compiled Separately and their object files later "linked" into one file. The linker may also be used to Produce directly executable CBM files.

Examples:

link O: prog=myprog, yourprog,anyprog

dinks the files MYPROG.OBJ, YOURPROG.OBJ and ANYPROG.OBJ

into one object file PROG.OBJ on disk drive OQ.

NOTE - "link" clears the text buffer.

R . .

(a) The Programs being linked must have identical variable
declarations at the outer program level.

(b) Each guter-level function or Procedure may only be defined
in one file.

(c) If the other files need to refer to this function or
Procedure, a duplicate header should be included, with the body
replaced by the keyword "extern",

(d) The first file in the list is assumed to contain the main
program. (The other files would normally just contain a dummy main
program:

begin

end.)

48

TCL Pascal = commodore

COMPUTER

Linker example:

file fl:

program test (input, output);
var i: integer;

procedure x; extern; (* x is defined in the other file #)
procedure y;

begin

write (i)
end;

begin (* main program *)
x

end.

file fe:

program testpart2(input, output);
var i : integer; (* var's must be identical to f1 #)
proce, ire y; extern; (* y is defined in f1 #)
Procedure x;

begin

i:=3;
write ('three =');y;

end;

begin

end.

The command sequence might be

comp f1

comp f2

link O:test=f1,f2

ex test

The program should print "three = 3"

(Including other files in a compilation (disk mode only)

If the character "#", followed immediately by a diskette file name,
is placed at the beginning of a pascal source line, then this
indicates to the compiler that the contents of the specified file
are to be included at that point in the progran.

This is extremely useful when program segments are to be linked, as
Bglobal declarations (which need to be the same in each segment) can
be kept in a separate file thus simplifying any alterations.

The facility cannot be nested (the included file must itself contain
no #filename's).

49

TCL Pascal = commodore

COMPUTER

Locate (disk mode) - make an executable file which can then be
loaded under BASIC and executed by just typing "RUN". This command
may even be used to create small Pascal Programs which will run ona
16K ‘CBM, since the runtime interpreter size is only 10K.

example:

locate O:xyz=jane

Creates an executable file XYZ on drive 0 from JANE.OBJ

NOTE - "locate" clears the text buffer.

50

TCL Paseal ZEcommodore

~~ COMPUTER

8, ERROR MESSAGES

2? Syntax error - editor command is mis-spelled or has invalid
Parameters.

?0ut of memory error - there is insufficient memory left to do the
command you specified, for example inserting a new program line or
"GETTING" a file.

With COMP,EX, LINK you should first use the "DISK" command.

?Illegal quantity error - bad numeric input to an editor command,
for example "NUMBER".

?File data error - one of the Pascal library files (PASCAL LIB 01
etc) is not present on the disk or else has been corrupted.

Compiler not resident ~- The L,P and R commands may only be used in
resident mode.

No source program - You typed L,P or R with no program text present
in the computer's memory.

51

TCL P :
aseal =xcommodore

COMPUTER

RUNTIME ERRORS

1. STACK OVERFLOW - (during compilation) program is too big
- (during execution) program needs too much

variable space or uses too many levels of recursion.

2. INTEGER READ ERROR ~ an integer was expected from the keyboard.

3. INTEGER OVERFLOW ~ overflow when multiplying two integers, or
DIVing or MODing by zero, or TRUNCating or ROUNDing too large a
number.

4, ARRAY INDEX ERROR ~ an expression used to index an array is
outside the declared range.

5. VARIABLE OUT OF RANGE - a variable, or a procedure or function
Parameter has been given a value outside the allowed range for that
data type.

6. CASE ERROR - there is no label in a case statement corresponding
to the value of the selection expression.

7. BAD PCODE - your program has been eorrupted, or (hopefully not)
a system bug. Occuring at random, this may indicate a memory fault.

8. SET VALUE ERROR - a set element has gone outside the range
0..127

9. FLOATING POINT OVERFLOW - may occur if the result of + - x / SQR
or EXP is too large.

10. FLOATING POINT READ ERROR - a floating point constant was
expected from the keyboard.

11. UNDEFINED GOTO - a GOTO statement referenced a non-existent
label.

12. COMPLEX LOG OR SQUARE ROOT - attempt to take the log or Square
root of a negative number, or the log of zero.

13. FILE NOT OPEN FOR READING —- READ or GET without a reset first.

14. FILE NOT OPEN FOR WRITING - WRITE or PUT without a rewrite
first.

15. END OF FILE - attempt to read a file with EOF true.

16. NO FREE I/O CHANNELS - CBM operating system only allows ten
files to be open at one time.

17. DEVICE READ ERROR - Bad status byte encountered while reading

52

data from the IEEE bus.

20 to 72. DISK ERROR

TCL Pascal

An error
floppy disk unit. Returns the
offending filename.

zZcommodore

COMPUTER

Status has been detected on the
error type and if possible the

53

9, Sample programs

Example 1

The character '‘'o' should
As

TCL Pascal

appear to
a variation, try deleting line

screen.

program bounce (input,

vdu (row, col, ' ');
col := col+3;

output);
const thecowscomehome = false;

DELAY = 30;
var row, col, i, Jj, d integer;
begin

row = 0;

col := 0;

Los:=1; jie:

" page;
repeat

for d := 1 to DELAY do;

row := row+i;

if (row > 23) or (row < 0) then
begin

i o:s -i;

row := row+i¢+i;

end;

if (col > 39) or (eol < 0) then
begin

J r= -jJ;
col := col+j+j;

end;

vdu (row, col, 'o')
,

until the cowscomehome

end.

Zcommodore

COMPUTER

"bounce" around the VDU screen.
13 to produce a pattern on the

begin

TCL Paseal =commodore

COMPUTER

Example 2 The game of Nim

program nim;

const NROWS = 24;

delay = 1000;

div 10));

10));

= 0) end;

coin = 168;
var pile : array [1..3] of 0..NROWS;

move : record

ntaken, pileno : integer

end;

i: integer;

key : char;

function gameover : boolean;

begin gameover := (pile[1] + pile [2] + pile [3]

function ase (n : integer) : char;
begin ase := chr (n + ord ('0')) end;
procedure display;

var p, row, col, firstcol : integer;

begin

page;
for p := 1 to 3 do

begin

firstcol := p¥*10;

for row :=0 to NROWS-1 do

if pile [p] >=ONROWS-row then
for col := firstcol +3 to

firstcol+5 do

vdu (row, col, chr (COIN));
if pile [p] >= then

vdu (NROWS-1, firstcol, asc (pilelp]

vdu (NROWS-1, firstcol+1, asec (pile[p] mod

end

end;

55

TCL P
ascal Cc commodore

COMPUTER

procedure Signon;

begin

page;
writeln ('! eH NIM ###1);
writeln;

writeln;
writelin ('I will set up three piles of coins ');
writeln ('To move, take any number of coins away’);
writeln ('from any pile. The player who clears');
writeln ('the screen wins. ');
writeln;

write (' Now hit any key to start : ");
while getkey = chr (0) do;
end;

procedure hismove;

');

[pileno]];

var ok : boolean;

begin

writeln ('Now enter your move :');
with move do repeat

writeln;

write ('Pile (1,2 or 3)? ');
read (pileno);
ok := pileno in [1..3];
if ok then

begin

write ('Number to take away ?

read (ntaken);
ok :s ntaken in [1..pile

end;

if not ok then writeln ('What ??');
until ok; ,
with move do pile [pileno] := pile [pileno]

- ntaken;
end; (#* of hismove #*)

56

TCL Pascal
xcommodore

COMPUTER

Procedure mymove;

var bit

[pileno]-1)+1

do x:= x2;

then ntaken

ntaken -— x;

> array [1..3, 1..4] of boolean;
parity : array [1..4] of boolean;
firstbit, x, i, j : integer;
begin

for i := 1 to 3 do

begin

xX i= pile [i];
for j := 4 downto 1 do

begin

bit Li, j] := odd (x);
xX := x div 2;

end;

end;

for i := 1 to 4 do parity [i] :=
bit [i,i] <> (bit [2,i] <> [3,i]);

move.pileno := 1;

move.ntaken := 0;

with move do

if not (parity [1] or parity [2] or parity
[3] or parity [4])then

begin

while pile [pileno] = 0 do pileno
t= pileno + 1;

if pile [Lpileno] =1 then ntaken:= 1
else

ntaken ts random mod (pile

end

else begin

firstbit := 1;

while not parity [firstbit] do
firstbit := firstbit + 1;

while not bit [pileno, firstbit] do
pileno := pileno + 1;

for i:= firstbit to 4 do

begin

X i= 13

for j := 3 downto i

if parity [i] then

if bit [pileno, i]

t= ntaken + x

else ntaken =

end

end;

with move do pile [pileno] := pile [pileno]
- ntaken;

end; (* of mymove #*)

57

“begin

signon;

repeat

~.-You win!')

commodore

COMPUTER

TCL Pascal cx
»~

for i:= 1 to 3 do pile [i] :=+ random mod 10 + 63
display;

repeat

nismove;

if gameover then writeln ('Congratulations

else begin

display;

mymove;
for i := 1 to delay do;

display;

writeln ('My move was ', move.ntaken
:3,' from pile', move.pileno :2);

if gameover then writeln ('### J
win.');

writeln;

writeln;

end;

until gameover;

write ('Another game ? ');
while input t= ' ' do get (input);
read (key);

while not eoln do get (input);
until key = ‘'n';

page;
end.

58

TCL Paseal xcommodore

COMPUTER

Til. TCL Pascaj Reference Manual

This manual is intended to ve used for quick reference by those
familiar with Pascal or a similar Programming language.

1._General

1.1 Pascal keywords

These are reserved words in Pascal and cannot be redefined. They
must be written without embedded Spaces or newlines. A complete list
is:

and do function nil program type
array downto goto not record until
begin else if of repeat var
case end’ in or set while
const file label packed then with
div for mod procedure to

1.2 P lL identifi

These are names chosen by the programmer for variables, constants
etc., and should consist of at least one letter, followed by zero or
more letters or digits. Upper and lower case letters are equivalent.
Identifiers should be unique in the first 8 characters, and must not
contain embedded blanks.

The following identifiers are standard (but may be redefined):

abs eoln new read sqrt

arctan exp odd readin suce

boolean false ord real text

char get output reset true

chr integer pack rewrite trunc

cos input page round unpack

aispose in pred sin write

eof maxint put sqr writeln

see also section 9 - extensions).

59

TCL Pascal C= commodore

COMPUTER

+ < '(apostrophe) [i= - <= .] ; # >= .. (’ / > (#) .
= <> #) t

These symbols should not contain embedded blanks.

1.4. Comments

Pascal comments are enclosed by the symbols (# and #).

Comments are totally ignored by the compiler. They can contain any
characters except the closing delimiter "#)",

1.5 Constants

Integer constants

These consist of a Sequence of digits, for example:

33 0001 O

No check is made to ensure that the value is less than 2##15,
Integer constants must not contain embedded blanks or commas (see
also section 9.1 on hex constants).

Real constants

These are of the form:

<integer part> . <fractional part>
or <integer part> E <exponent>
or <integer part> . <fractional Ppart> E <exponent>

The integer and fractional parts are non-null Strings of digits. The
"E" may be in upper or lower case in TCL Pascal. The exponent is a
digit string which may be preceded by a sign [+ or -].

Real constants must not contain ANY embedded blanks.

Examples:

3.14159 HE-9 -387.4E11

1E+ 30

A real constant which is out of range (greater than about 1E38) will
cause an error. ‘

60

TCL Pascal Zz commodore

COMPUTER

These are enclosed in Single quotes, and may contain any character except a newline. Single quotes are included in a String by writing them twice.

Examples:

Tot, '$', "ttt (Character constants)

‘Hi there!', 'Fred'tts String' (string constants)

(see also section 9.1 on hex constants).

1.6 Blanks

Any number of spaces or newlines may separate two keywords, identifiers, constants or other Symbols, but at least one blank is required between adjacent keywords, identifiers and numbers,

61

TCL Pascal z commodore

COMPUTER

2. Data types and operators

2.1 Integer

Pascal integers are whole numbers in the range - MAXINT to + MAXINT,

where MAXINT is an impiementation defined constant (32767 in TCL

Pascal).

TCL Pascal stores integers in 16-bit 2's complement form, so

integers may range from -32768 to +32767.

Integer operators are

+ addition

- subtraction
#- multiplication

div integer division (result is rounded towards zero)

mod »- remainder operator

- (unary operator) negation

+ and ~ produce 2's complement results mod 2*#16.

®, div and. mod are defined only on values in tae range

-MAXINT..MAXINT, and the result must be in this range (otherwise an

error occurs).

Division by zero causes an error.

x mod y = x = ((x div y) * y)

2.2 Real

Real numbers in TCL Pascal are held in floating point binary form

with a 32-bit mantissa (9 digits). The exponent can range from -38

to +38.

The operators +, -, * behave as for integers, but produce a REAL

result. (Which will cause an error if it is out of range).

The operator / denotes floating point division. Division by zero
will cause an error.

Integer expressions and constants can b2 used wherever a real

expression is acceptable, but real values can't be used with DIV or

MOD.

Conversion from real to integer is done by the functions TRUNC and

ROUND (section 2.8).

62

TCL Pascal x commodore

COMPUTER

2.3 Char

The Pascal data type "char" operates on an ordered set of
characters. In TCL Pascal the 128 character ASCII set is used.
(Extended to 256 characters to include CBM graphies).

In all implementations of Pascal the digits ror to ‘Q' are
guaranteed to be ordered and contiguous, and the letters 'A' to 'Z!
are ordered (but not necessarily contiguous).

The standard functions ORD and CHR convert from character to integer
and back.

For example, in TCL Pascal:

ord ('&*)

chr (36)
65
‘gr 1

oo

Also, sucec(x) gives the next character after x, and pred(x) gives
the character before x, for example:

tye

tgr

suce('3')
pred('1') H

o
u

Note that in TCL CBM Pascal suce (chr (255)) and pred (chr (0)) are
undefined, and chr (x) with x outside the range 0..255 is not
allowed.

2.4 User-defined (enumerated) types,

These are usually defined by means of a TYPE declaration (section

3.2) for example:

tyre day = (monday, tuesday, wednesday, thursday, friday,

Saturday, sunday);

colour = (RED, GREEN, BLUE);

The data type "day" then has seven ordcred values represented by the

identifiers MONDAY, TUESDAY, etc.

The type "colour" has three values. The functions ORD, SUCC and PRED

may be used on these types (see the previous section). For example:

suce (wednesday) = thursday
pred (green) = red
ord (monday) = 0
ord (green) = 1
ord (sunday) = 6

63

TCL Pascal Zzcommodore

COMPUTER

2.5 Subrange types

The user may define subranges over any scalar type except REAL.
Examples:

type year = 1976..1990;

weekday = monday..friday;

These types have the same properties as their Parent types, but
often occupy less storage space, and values are checked at runtime
to see that they fall in the required range. They also act as a
convenient means of documentation.

2.6 Boolean

Boolean values in Pascal are represented by the standard identifiers
TRUE and FALSE. In fact the data type Boolean may be thought of as
resulting from the declaration:

type boolean = (false, true)
so'true>false. The Boolean operators defined in Pascal are:

and -~ logical "and" operation

or -- logical "or" operation .

not -- (unary operator) logical negation.

The relational operators

less than
greater than

equal to

less than or equal to

greater than or equal to

not equal to A
V
A
W
V
M
A

vu
oi

may be used with any scalar data type (integer, real, Boolean, char,

user-defined), and give a Boolean result. They may also be used to

compare strings (section 5.)

2.7 Operator precedence

The relational operators

£< > <= >= = <> in (see section 5)

have lowest precedence, followed by

+ - or

then

64

TCL Pascal commodore

COMPUTER

* / div mod and

and finally the unary operator

not

Evaluation is otherwise left to right, and can be changed by using

parentheses. Particular care should be taken with expressions like:

(x>3) and (y=2)

This would be illegal if the parentheses were omitted.

65

TCL Pascal Cz commodore

COMPUTER

2,8 Summary of arithmetic and conversion functions

(# can't be real)

FUNCTION PARAMETER RESULT MEANING

abs (x) integer integer absolute value

abs (x) real real absolute value

sqr (x) integer integer square

sqr (x) real real square

sqrt (x) real or integer real square root (x>=0)

ln (x) real or integer real natural logarithm

(x>0)

exp (x) real or integer real e raised to the xth
power ,

sin (x) real or integer real sine (x in radians)

cos (x) real or integer real cosine (x in radians)

arctan (x) real or integer real aretangent (0 to PI
radians)

trune (x) real integer convert real to

integer by truncation

towards zero

round (x) real integer convert real to

integer by rounding

chr (x) integer char convert ASCII value

odd (x) integer Boolean TRUE if x is odd

ord (x) sealar # integer position within a
data type

pred (x) scalar *® scalar preceding value ina

data type

suce (x) sealar # scalar next value ina
data type

66

TCL Paseal
xcommodore

COMPUTER

i._Pascal declarations and statements

2.1_Pascal Programs

4 Pascal program takes the form:

program header

label declaration part

constant declaration part

type declaration part

variable declaration part

function and procedure declarations
BEGIN

executable statements

END.

The declarations are all optional. Label declarations are discussed
in III 3.12, functions and procedures in III 6.

The program header is optional in TCL Pascal. If it is included it
consists of the keyword PROGRAM followed by a name (which can be any
valid identifier) followed by a list of identifiers in brackets, for
example:

program joe (input, output);

"Input™ and "Output" are external files used by the program "joe".
The header is terminated by a semicolon.

The final full stop after the program "end" is always required.

a.1.1 Constant declarations

These are used to assign values to identifiers which will not change

throughout the program. They facilitate modifications to the

program and provide a means of documentation.

The keyword "const" is followed by one or more declarations of the

form

identifier = value;

"value" may be a signed or unsigned integer, real, a Boolean,

character, string, a member of an enumerated type or a previously

defined constant identifier.

67

TCL Pascal xcommodore

COMPUTER

Examples:

const message = 'hi therel!';
ch = "$t;

PI = 3.14;
MINUSPI = -PI

3.2 Iype declarations

These are used to make an identifier Synonymous with a given data
type. The keyword "type" is followed by one or more declarations:

identifier = datatype;

Examples:

type suit = (SPADES, HEARTS, DIAMONDS, CLUBS);
int = integer;
byte = 0..255;

3.3. Variable declarations

In Pascal all variables must be declared explicitly. This is
Sometimes annoying but makes the Programmer's intention clearer and
helps the compiler to detect errors.

The word "var" is followed by one or more declarations:

identifier list: datatype;

Examples:

type day = (monday, tuesday, wednesday, thursday, friday);
var x,y:real;

i: integer;

Switch : Boolean;
today, tomorrow, payday:day;
favouritecolour : (BLUE, RED, GREEN, PINK);
date : 1970..1990;

The variables denoted by these identifiers can then take any of the
allowed values for the corresponding data type.

3.4 Executable statements

The executable part of a Pascal program enclosed by the keywords
BEGIN and END, consists of zero or more sequentially executed
Statements separated by semicolons. Redundant semicolons are always
accepted and generate no code. There is no need for any
correspondence between the logical structure of statements and their
physical layout. Well formatted programs with one statement per

68

TCL Pascal =x commodore
COMPUTER

line are easier to read, however.

3.5 Assignment statements

The form of this statement is:

variable := expression

where the left and right hand sides must have compatible data types.

This means that they must arise from the same type identifier, or be

declared as variables in the same declaration. Exceptions are if the

variable type is a subrange of the expression type, or they are sets

with compatible base types, or if the left hand side is real and the

right hand side is integer.

The value of the variable is set to the value of the expression, and

future references to the variable will yield this value.

Examples:

x t= 3/sqrt(36) x is set to 0.5

yos= x+4 y is set to 4.5

yi= y-2 y is set to 2.5

x and y are "real" variables.

3.6 Compound statements

The construction:

BEGIN

Sequence of statements separated by semicolons

END

behaves as a single statement, which when executed causes the

execution of all the enclosed statements in sequence.

The statement "IF Boolean expression THEN statement 1" causes

statement 1 to be executed only if the expression is TRUE.

Alternatively, "IF Boolean expression THEN stitement 1 ELSE

statement 2" causes statement 2 to be executed instead if the

expression is FALSE.

IMPORTANT ~- no semicolon may be placed before the ELSE.

Statement 1 and statement 2 can be any Pascal statement, including

another IF statement. For example: if x then if y then s1 else s2 -

69

TCL Pascal ” commodore

COMPUTER

is taken to mean:

if x then

begin

if y then s1 else s2

end

" n e

REPEAT

sequence of statements separated by semicolons

UNTIL Boolean expression

causes the sequence to be executed repeatedly (at least once) until

the expression evaluates to TRUE when it is checked at the end of a

loop.

WHILE Boolean expression DO statement 1

Statemont 1 is repeated zero or more times until the expression

turns out to be FALSE.

FOR variable := e1 TO e2 DO statement 1

The variable can be any scalar type except real. el and e2 are

expressions of the same type as the variable. Statement 1 is

executed exactly ord (e2) - ord (e1) + 1 times (zero times if

e2<ei1). On successive loops the value of the variable is el,

suce(e1), suce (suce(el)),..., e2

An alternative form is:

FOR variable := e2 DOWNTO e1 DO statement 1

Where statement 1 is executed with successively decreasing values of

the variable.

Statement 1 should not try to alter the variable, as in:

for i := 1 to 10 do i := i+ 1 (® WRONG #)

Structure members (section 5) can't be used as control variables in

FOR loops.

Also, control variables must be local to the current block (section

6.4).

70

TCL Pascal ¥ commodore

COMPUTER

CASE expression OF

constant list

constant list
.
.

statement;

statement; oe

oe

constant list : statement;

END

A redundant semicolon may be included before the END, as shown.

Each constant list consists of one or more constants (which must be

the same data type as the case expression), separated by commas. The

case expression must be a scalar type (and can't be real). Each

label in the case statement should be unique, and indicates that the

statement it prefixes is the one to be executed if the case

expression has that value. If no case labels match the expression

value when the case statement is executed, a CASE ERROR occurs.

WARNING - Case statements with a wide spread of values should be

avoided, for example:

Case n of

1; statement 1;

44,255: statement 2

end

This will generate a large jump table in memory with null entries

for all the intermediate values (2,3 ete.). Generally, ease

statements are an efficient way of choosing one of many. similar

statements to execute.

Pascal statements may be prefixed by a label thus:

label : statement

The label is an unsigned integer which should differ from all other

labels in the first 8 digits in TCL Pascal (4 digits in standard

Pascal). Control can then be transferred to this statement from

another part of the program by means of the "goto" statement.

GOTO label

All labels must be declared before use (see below).

The effect of jumping into a structured statement (FOR, WHILE,

REPEAT, IF, CASE, WITH) or into a funetion or procedure is

undefined.

71

TCL Pascal £ commodore

COMPUTER

The use of GOTO'ts is not recommended if it can be avoided, since

programs quickly become unreadable and error detection becomes very

difficult.

Jumping to an undefined (as against undeclared) label is signalled

as a runtime error in TCL Pascal.

GOTO's can be used to exit from nested functions and procedures.

Label declaration

This takes the form:

LABEL list of labels;

The labels are separated by commas.

T2

TCL P 1
asca Cz commodore

COMPUTER

4, Input and Output of text

A file is a Pascal structured variable which (unlike an array) has

no fixed size. Its elements are normally accessed sequentially and

either reside on a dise or are associated with some physical I/0

device such as the keyboard or display.

In this part we look mainly at textfiles, which are essentially

files of characters (Pascal data type CHAR), but which give special

treatment to the newline character. In particular the standard

textfiles INPUT and OUTPUT, which are usually the keyboard and

display, are discussed. Dise files are covered later in III.8 and

III.9.

4.1 Outputting to textfiles

A textfile is a variable declared as type TEXT. Associated with any

Pascal file f is a buffer variable ft which is used in transferring

data to and from the file. The standard procedure call:

write (f, ch)

is equivalent to:

ft:= ch; put (f) .

writeln (f)

sends a newline character (ASCII carriage return followed by a line

feed) to the file f.

page (f)

sends a form-feed (or clears the screen in the case of the display).

4.2 I b ti t Pil

get (f)

reads the next item from the file f into ft.

read (f, ch)

for a character variable ch is equivalent to:

ch := ft; get (ch)

If the result of a GET is a newline character (a carriage return -

linefeeds are ignored in textfiles), then f t appears to contain a

space and the standard function EOLN(f) is set to TRUE. Otherwise

73

Z commodore

COMPUTER
TCL Pascal C

EOLN (f) is FALSE.

If the end of the file has been reached then get(f) will cause the

standard function EOF(f) to become true, and ft will be undefined.

Doing a get(f) while EOF(f) is TRUE will cause an error.

readin(f)

skips to the start of the next line. It means:

begin while not eoln(f) do get (f); get (f) end

4,3 Reading other data types from textfiles

Syntax:

read (f, variable list)

each’ variable in the list can be of type CHAR, INTEGER or REAL.

char : peads one character into the variable, as above.

integer : reads any valid (signed or unsigned) integer constant

into the variable, skipping leading blanks and newlines.

real : reads any valid integer or real constant into the

variable, skipping leading blanks and newlines.

ftis set in each case to the next character after the data read.

4,4 Writing other data types to textfiles

Syntax:

write (f, expression list).

each expression can be of a type CHAR, REAL, BOOLEAN, INTEGER or a

string, and may be qualified by a field width

expression : w

where w is a non-negative integer expression giving the total number

of characters to write to the file.

Character or string: Write sufficient spaces to gave a total of w

characters, then write the character or string.

If w is too small then the string is truncated

on the right. Default w = the size of the

string.

Boolean: As with string, but one of 'TRUE ' or 'FALSE!

74

Integer:

Real:

4,5 Abbreviations

commodore

COMPUTER
TCL Pascal Cx

is written. Default w=6.

Write sufficient spaces first to give a total

of w characters. Then write the number without

leading zeros, preceded by a minus sign if it

is negative. If w is too small print out the

entire number with no spaces. Default wT.

There are two formats:

(i) Floating point - write a sign character

(space or '=') followed by a digit, followed by

a decimal point, followed by enough digits to

give a total of w characters, followed by a

Necharacter exponent. If w is too small, at

least one digit is still printed after the

decimal point. Default w=12.

(ii) Fixed point - the number of decimal

places must be specified:

expression : wi: d

Enough spaces are first printed to give a total

of w characters, followed by a minus sign if

negative, followed by a decimal point and d

fractional digits, with rounding if necessary.

If w is too small, no spaces are printed but

the entire number is still output.

writeln (f,...) is short for write (f,...);writeln (ft)

readin (f,...) is short for read (f,...);readin (f)

write (...) is short for write (output,..-.-)

read (....) is short for read (input,...)

writeln is short for writeln (output)

readln is short for readin (input)

eoln is short for eoln (input)

eof is short for eof (input)

page is short for page (output)

15

TCL Pascal Cz commodore

COMPUTER

4 6 Manipulating files

There is no problem in passing files as variable parameters. In TCL

Pascal (but not in standard Paseal) assignment and passing as value

parameters is also allowed. For example:

var sourcefile : text

begin

sourcefile := input;

.
°

read (sourcefile,x); (# reads from keyboard #*)

76

commodore

COMPUTER
TCL Pascal , Cx

5. Structured data types

5.) Arrays

The syntax of array types is:

ARRAY (indextype) OF element type.

Where "indextype"™ can be any scalar or subrange type except real.

If indextype has values ranging from m to n, say, then this defines

an array of ord (n)-ord(m)+1 values of type “elementtype"™, which are

referenced using the subscripts [m], [suce(m)],...,[n].

Alternatively arrays can be aceessed as a whole:

Examples:

var x,z : array [1..64] of integer;

y : array {[o..3] ef array {[-4..2] of real,

begin

x [1] c= 0;
x [5] := x [1] + 2;

y (3] [1] := 3.3453

Ziz X3 (* Transfer whole array #)

"element type" may be any Pascal data tyne. N-dimensional arrays

may be abbreviated as follows:

array [t1,t2,...,tn] of sometype

which is equivalent to:

array [t1] of array [t2] of ... array [tn] of sometype

example:

var x: arrays [1..7,4..9; boolean] of char:

references to n-dimensional arrays may also be abbreviated,

x[i,7,false] :+ '$';

5.2 Sets

The syntax is:-

SET OF elementtype

where “elementtype" should be a scalar or subrange type, but not

17

TCL Pascal < commodore

COMPUTER

REAL. Sets are constructed from a collection of values in square

brackets, for example:

var x : set of 0..127; .

y : set of (RED, GREEN, BLUE) ;

begin

x:= [1,sqr(2), 6..74];.

y:= (BLUE, GREEN];

where 6..74 gives all the values between 6 and 74 inclusive. Set

elements must have ordinal values between 0 and 127 inclusive. If

their base types are compatible, then two sets are said to be

compatible, and operations on compatible sets are:

Intersection (highest precedence)

and - . Union and difference

<> <= >= Equality, inequality and inclusion tests.

t
+

@

The IN operator tests membership of a set. The left hand side

should be a scalar compatible with the set's base type. IN has the

same precedence as the relational operators <>,= ete.

Examples:

Assuming

var x,y : set of (APPLES, PEARS, ORANGES, BANANAS, FIGS);

begin

x:=([APPLES, PEARS, BANANAS];

y:=[BANANAS, FIGS];

Then

x+y is [APPLES, PEARS, BANANAS, FIGS]

x-y is LAPPLES, PEARS]

x#y is [BANANAS]

x=y,x<=y and xo=y are all false

x<>y is true

y <= LAPPLES, FIGS, BANANAS] is true

y<zy is true

y>=y is true

y=(BANANAS, FIGS] is true

BANANAS IN y is true

ORANGES IN x+y is false

78

TCL CL Pascal Z=commodore

COMPUTER

5.3 Records

The basic syntax is:

RECORD

identifier list

identifier list

data type;

data type;

identifier list : data type

END

An optional semicolon may be placed before the END. The fields may

be accessed by the field name preceeded by a dot, for example:

var x,y:record

a,b:integer;

e:real

end;

begin

x.b.:= -33;

x.c := 9E-20;

Xea z= xX.b+2;

Entire records may also be assigned:

xX 32 Y3

Several different record definitions may be combined using the

following syntax:

RECORD
any fields common to all variants

CASE identifier:datatype OF

constant list : (field list);

constant list : (field list);

constant list : (field list)

END

Again there can be a redundant semicolon before the END. The

variant "field lists" may themselves contain nested variants, for

example:

type date = record

year : integer;

month : (JAN, FEB, MAR,APR,MAY, JUN, JLY, AUG, SEP, OCT, NOV, DEC) ;

day : 1..3135

end;

79

TCL Pascal C= commodore

COMPUTER

person = record

name: packed array [1..30] of char;

birthday : date;

case status: (EMPLOYED, UNEMPLOYED, RETIRED, STUDENT) of

UNEMPLOYED: (registered : date);

EMPLOYED : (case selfemployed : boolean of

true :; (numberofemployees:integer) ;

false : (employer: packed array [1..30]
of char;

dateemployed : date))

end;

var his:person;

begin

his.name := 'Harry Johnson

his.birthday.year := 1938;

his.birthday.month := DEC;

his.birthday.day := 12;

his.status := EMPLOYED;

his.employer :=

etc.

WITH statements have the effect of declaring the fields of a record

as local variables for that statement. For example:

with his, birthday do

begin

month := DEC;

year := 1938;
day t= 12;

end;

The record cannot however be referenced as a whole from inside the

WITH statement.

WITH ri, r2, ..-, rn DO statement

is equivalent to:

WITH r1 DO WITH r2 DO... WITH rn DO statement

5,4 Packed structures.

Records, arrays, sets and files may be preceeded by the word

®packed*. This is a command to the compiler to optimise storage

space for that structure, possibly at the expense of speed in

accessing individual components of the structure. In TCL Pascal,

"packed" has little effect on speed, but may cut storage by half in

arrays of enumerated values, characters and subranges (0..255 an”?

less). The disadvantage is that packed array elements can't be use

as VAR parameters to procedures or functions (but whole packeu

80

TCL Pascal
Zzcommodore

COMPUTER

arrays can).

Packed arrays [1..n] of type CHAR are special in Pascal because they
are considered to be string variables of length n.

Examples:

var x,y :packed array [1..4] of char;
z: packed array [1..10] of char;

begin

x is 'how ';

y i= 'when';

Zz := 'Hi there !';

y=x is false, y>x, y>=x and y<>x are true.
y>'what' is true, x<'why ' is true.

But note:

x and z are incompatible (different lengths)

x and thello't are incompatible.

z and 'who ' are incompatible.

5.5 Pack and Unpack (not available in resident mode)

Access to individual components of packed arrays may be

the programmer is advised to pack or unpack a packed

Single operation.

If U and P are array variables, for example:

type t =(some data type);
var U : array [m..n] of t;

P:packed array [a..b] of ¢t;

where (n-m) >= (b-a) then:

pack (U,i,P)

is equivalent to:

for j:sa to b do P [j] :=+0 [j-a+i]

and

unpack (P,U,i)

is equivalent to:

for j := a to b do U [jea+i] := P[j]

costly, and

array in a

81

TCL Pascal
commodore

COMPUTER

6. Functions and Procedures

6.1 Functi ; lefiniti

The syntax for each definition is the same as the syntax for a

program, except that a function or procedure header is used instead

of a program header, and also a semicolon appears at the end instead

of a full stop:

procedure or function header

label declarations

const definitions

type definitions

variable declarations

procedure and function definitions

BEGIN

executable code for this procedure or function

END;

Any number of procedures or functions may be defined in a program.

The definitions should occur between the variable declarations and

the main "BEGIN" of the program.

A procedure header has the form:

PROCEDURE procedurename;
or

PROCEDURE procedurename (formal parameter list);

A function header has the form:

FUNCTION functionname : datatype;

or
FUNCTION functionname (formal parameter list) : data type;

6.2 Procedure and function calls,

Procedure calls are statements having the form:

procedurename

or

procedurename (parameters)

The effect is to execute any code between the BEGIN and the END of

the procedure definition, and then return to continue the program

normally, from the statement after the call.

Function calls are expressions which have the data type specified in

82

TCL Pascal commodore

COMPUTER

the function header. To evaluate the function, any code between the
BEGIN and the END of the definition is executed, and the value

returned is the last value that was assigned to the function name.

The value returned by a function must be a scalar or a pointer.

Examples:

procedure’ xX;

begin

writeln ('xxxxx')
end;

begin x;

writeln ('tyyyyy');

x

end.

Is equivalent to

begin

writeln ('xxxxx') ;
writeln ('yyyyy');
writeln ('xxxxx')

end.

The following example will set i to the value 4:

var i : integer;

function xyz : integer;

begin

xyz

xyz

end;

begin

= 2;

= 4 ee

«0

The usefulness of procedure and function calls can be extended by

passing parameters. If these are used they must correspond in

number, position and type with the formal (dummy) parameters in the

definition.

The formal parameter list contains one or more parts separated by

semicolons. Each part has one of the forms:

identifier list : datatype

VAR identifier list : datatype

FUNCTION identifier list : datatype

PROCEDURE identifier list

83

TCL Pascal Cx commodore

COMPUTER

These correspond to four different classes of parameters,

identifiers, variables, FUNCTION and PROCEDURE parameters which are

substituted with expression values, variables, function and

procedure names respectively when the function or procedure is

called.

Examples:

const SIZE = 20;

type vee = array [1..SIZE] of integer;

var v:ivec ; i:integer;

function tan (x:real):real;

begin

tan := sin (x)/cos(x)
end;

procedure zero (var a:vec);

begin

for i := 1 to SIZE do a [i] := 0

end;

function square (x:integer) :integer;

begin
square := sqr(x)

end;

function sigma (function f:integer; n,m rinteger) :integer;

var sum, i:integer;

begin

sum: =0;

for izi= n to m do sum:=sum+f(i);

sigma:=sum;

end;

Given the above definitions

tan (0.5) would give the tangent of 0.5 radians

(sin (0.5)/cos(0.5))

zero (v) would set the array v to be all zeros.

Note that passing large arrays (and records) as VAR parameters is a

good idea, because the computer does not then have to copy the

array.

sigma (square,1,20)

evaluates 1444+9+164+...+400.

TCL Pascal (and many other Pascal systems) will not let you pass

standard function and procedure names as parameters, hence the need

for the function "square".

WARNING - Functions and procedures passed as parameters can

themselves only have value parameters, and these are not checked.

84

TCL Pascal Cc commodore

COMPUTER

So:

procedure X(a:real);
begin
°
«

end;

procedure y(procedure b);

begin

b(4)
end;

begin

y (x)

will lead to disaster because x expects a real and gets an integer

parameter (4).

6.4 Local declarations

Any variables, constants, labels, types, procedures and functions

declared within a procedure or function are local to that procedure

or function and cannot be referred to from outside it.

"Global" identifiers defined outside a function or procedure may

also be referenced inside it, unless they have been redefined by

local definitions.

Examples:

program example;

var i:integer; (* may be referenced by main prog, P1 and P2 #)

j:real; (*# may be referenced by main prog and P3 #)

k:boolean; (# may be referenced anywhere #*)

procedure P1;

var j:integer; (* may be referenced by P1 and P2 only #)

procedure P2;

var m:char; (* may be referenced by P2 only *)

begin

end;

begin

end; (* of P1 *)

procedure P3;

const i=49; (# may be referenced by P3 only #)

P1 and P3 may be called from anywhere.

p2 may be called from P1 or P2 only.

85

TCL Pasoal = commodore

COMPUTER

6.5 Recursion and forward references,

Functions and procedures can call themselves recursively:

function factorial (x : integer) :integer;

begin

if x=0 then factorial :s 1
else factorial := factorial (x-1)#x

end;

factorial (4) gives 4#3#281 «2 28

Sometimes it is helpful for a procedure to be able to call another

procedure before the procedure being called is defined. The
undefined procedure must previously have been declared with name and

parameter list, together with "forward" - see example. The

parameter list is not required on subsequent declaration of the
procedure.

Example:

procedure x(parameters for x); forward;
procedure y(parameters for y);
begin

(*# calls x #)
end;

procedure x;

begin

(* calls y *)
end;

x and y call one another (they are "mutually recursive").

86

TCL Pascal Zcommodore

COMPUTER

tT. Dynamic storage and Pointers

7.1 Pointers

Variables of a pointer type take as values the memory address of

other variables. This can be used in Pascal to create variables as

required while the program is running, since the compiler does not

need to know the memory address in advance if it can be stored ina

pointer. The syntax of a pointer type is:

t type pointed to

where "type pointed to" is an identifier which is the name of some

data type (which could be declared later, allowing recursive

definitions such as linked lists and trees).

Examples:

type treepointer = ttree;

tree = record

leftbranch, rightbranch : treepointer;

data : sometype;

end;

var oak : tree;

p : tinteger;

The only way of giving a pointer a value in standard Pascal is to

assign it the value "nil" (which is guaranteed to point to no

variable) or to use the procedure "NEW".

In TCL Paseal, "nil" is the address 0000.

Pointers can, once assigned a value, be tested for equality (<> and

=).

NEW allocates a new variable from the available storage (if any) and

stores a pointer to it in the specified variable.

The variable created may then be referenced by the pointer variable

followed by at.

DISPOSE destroys the variable pointed to by the specified pointer

and makes the storage available for other use. Of course you must

be sure that the variable being DISPOSED is never referenced again.

87

TCL Pascal commodore

COMPUTER

Examples:

var p: freal;

begin

new (p);
pt 2103.7;

write (pt#p t#p t);

dispose (p)
end.

Would print the cube of 103.7 and then destroy the space used to

store it. Pt means the variable whose address is in p.

88

commodore

COMPUTER
TCL Paseal <

8. Disk Files (sections 8.1 to 8.4 do not apply to resident mode)

8.1 Declarations

Disk files are declared as Pascal variables of type "file of X*

where X is the base type of the file, and can be any structured or

unstructured data type. For example:

type patient = record

name : packed array [1..20] of char;

wordnumber : integer

end;

var f: file of integer;

g,h:file of patient;

Every file f declared in Pascal has an associated buffer variable f+

whose type is the base type of the file. Disk files can also be

textfiles, for example:

var fil, f2 :text; (see section 4.1)

8.2 Sequential writing

Before they can be read or written, disk files must be opened using

one of the standard procedures RESET and REWRITE. Up to 5

sequential disk files may be open at any time.

rewrite (f)

creates an empty file which is then open for sequential writing.

The end-of-file function eof(f) will return TRUE in this mode. The

call put(f) writes the data in the file buffer (the variable ft) to

the file.

The sequence:

begin ft := expr; put (f) end

may be abbreviated to:

write (f,expr)

- in TCL Pascal, assignments should not be made to

the buffer variable ft before a reset(f) or rewrite (f) has been

done.

89

commodore

COMPUTER
TCL Pascal Cc

8,3 Sequential reading

The procedure call:

reset (f)

opens the file f for sequential reading. f must previously have been

written by a REWRITE command, otherwise the error message FILE DOES

NOT EXIST will be printed. The first record in the file will be

placed in the variable ft. (Or if f is empty, ft will be undefined

and eof(f) will be true).

Successive records can be read into the buffer variable ft by the

procedure eall:

get (f)

read (f,x) is equivalent to x:=ft;get (f)

The function eof(f) returns TRUE when there are no more records in

the file. Attempts to read past an end-of-file will cause an error.

As an example the following program writes a file containing the

numbers 1 to 10, and then reads them back displaying them on the Pet

screen:

var i: integer;

testfile : file of integer;

begin

rewrite (testfile);

for i i= 1 to 10 do write (testfile , i);

reset (testfile);

while not eof (testfile) do

begin

read (testfile, i);
writeln (i)

end

end.

8.4 External files

The files described above are "internal" files, in other words

temporary files which are normally deleted when the program (or

procedure or function) in which they are defined finishes.

Permanent diskette files may be created and/or accessed by giving a

filename parameter to RESET or REWRITE. (The parameter may be

either a string constant or a string variable). This is an

extension to standard Pascal allowing specification of filenames,

which can be useful in interactive programs.

Note that the filename cannot contain any imbedded spaces. If the

filename is a string variable, it should be terminated by at least

90

TCL Pascal = commodore

COMPUTER

one space.

Examples:

var fname : packed array [1..15] of char;
f, g : file of sometype;

begin

reset (f,'datafile')
fname := '0:TEMP. HEX V5

rewrite (g,fname) ;

8.5 Reading and writing from other devices

Any device ou the IEEE bus may be accessed by using RESET or REWRITE

with the syntax:

reset (f, devicenumber,secondaryaddress)
or reset (f, devicenumber,secondaryaddress,filename)

where device number and secondary address are integer expressions.

This syntax can also be used in resident mode.

Using a secondary address of 256 instead of 0O gives automatic

switching between upper and lower case on the series 3022 printer,

for example:

var printer:text;

begin

rewrite (printer,4,256) ;
writeln (printer,'Message with UPPER case!');

The rewrite command may be used to send commands to the floppy disk

unit, for example:

const DISK = 8; (* disk unit physical device # #*)
CC = 15; (# command channel secondary address #)

var f : text;

begin

rewrite (f, disk, ec, 'I1'); (# Initialize drive 0 #*)

rewrite (f, disk, cc, 'RO:NEWNAME=OLDNAME');

/ (# Rename a file #)
rewrite (f, disk, ce, 'C1:COPY=0:FILE1,0:FILE2');

> (# Copy disk files #*)

fil a e

The following example program prompts the user fop @ dis: file name,

and then outputs an upper-and-lower-case text:ile to the CBM

printer.

XG CLOSE umnaA
Ths Crit a a exkesign f aberdrth Parca of sang We wana dy

Crp Ky close 4 dite (wt rorlkug oF rLnbdy) 4

mired TL ley 8

dine (£)

91

TCL Pascal

program printfile;

var fname : packed array {[1..80] of char;

eh : char;

f, printer : text;

begin

writeln;

writeln (*Filename 7 ');

read (fname) ;

reset (f, fname);

rewrite (printer, 4, 256);

while not eof (f) do

begin

while not eoln (f) do

begin

read (f, ch);

write (printer, ch);

end;

readin (f);
writeln (printer);

end

end.

commodore

COMPUTER

92

TCL Pascal C= commodore

COMPUTER

9g, Extensions to standard PASCAL

The features described in this section are specific to CBM Pascal

and might not be implemented on other systems.

9.1. Hexadecimal constants These are introduced by the symbol $

(for integer constants) or a backslash (for character constants).

Their main application is probably in machine language and I/0

interfacing

Examples:

const portA=$e8Ht;

linefeed= \a;

var chardata:char;

begin

chardata:zlinefeed; (#* linefeed is a

constant of type CHAR *)

poke (porta, $3f);

(writes the data 3f hex to VIA port "A" mapped at hex memory address

E84F)

9,2 Memory VYDY and port access

The standard functions/procedures PEEK, POKE, ORIGIN, GETKEY and VDU

are provided for this purpose.

peek (x:integer):0..255

is a function which gives the contents of the physical memory

location x, while the procedure:

poke (x:integer; y:0..255)

is used to change the contents of location x to the byte y. Poke

should, of course, be used with great care to avoid corrupting your

progran.
8

origin(x : tsometype;y :integer)

sets the pointer x to point at the physical memory location y. x

can be any pointer type. This should be used with care (see section

10).

The procedure VDU (x,y :integer; c -char) stores the character c in

93

TCL Pascal Cz commodore

COMPUTER

the VDU memory row x, column y.

Finally, the function

getkey: char

returns a character read directly from the keyboard port. Chr(0) is

returned if no character is ready.

Examples:

var x:0..255;

begin poke($014c, $33); stores the byte 33 (hex) at address the

(hex)

x:= peek(47); sets x to the contents of decimal memory

address 47

page; clears the VDU screen

VDU(0,3,'?'); writes a question mark to the VDU row 0,

column 3

while getkey=chr(0)do; waits for someone to press a key

The procedures WRHEX and WRHEX2, and the function RDHEX are

provided.

wrhex (f:text; x:integer)

writes x as four hex. digits on the textfile f.

wrhex2 (f:text; x:0..255)

writes the byte x as two hex. digits.

Examples

rewrite (printer,4,0);

wrhex (printer, -1);.wrhex2 (output, 3)

prints FFFF on the printer and 03 on the Pet screen.

The function,

rdhex (f:text):integer

gh

TCL Pascal zcommodore

COMPUTER

reads a 16 bit value from the file f, skipping any leading blanks

and discarding all but the last four digits read.

0.4 Bit ipulati

ANDB,ORB,XORB,NOTB,SHL, and SHR are functions operating on integers

but treated as 16 bit logical data. The first four do bitwise AND,

inclusive OR, exclusive OR and i's complement.

SHL(x,y) shifts x left by y bits(zeros are shifted in)

SHR(x,y) shifts x right by y bits

SHL(x,-¥) is equivalent to SHR(x,y)

examples:

andb ($fff0,$00ff)=$00f0

orb ($ff00,$000f) = $rfof

xorb($rfro0,$ofrfro) = $f0fo

notb($fofo) = $0fdr

shl.(4,4) = $40

shl(4,-1) = 2

shr (4,-12) = $4000

shl(4,0) = shr(4,0)=4

shr ($4444,4) = $444

9,5 Catching I/0 errors

Occasionally it is necessary for a program to protect itself against

unexpected termination due to invalid input.

The procedure call:

iotrap(false)

turns off PASCAL error messages for real and integer read operations

and disk I/0:

iotrap(true)

turns checking back on again. After each integer or floating point

or hex read operation the function IOERROR may be used giving an

95

TCL Pascal C= commodore

COMPUTER

integer error number:

ioerror= O-No error

2-Integer read error

10-+Floating point read error

ete. (see section II.8 for a complete list of I/0 runtime

errors).

9,6 Keyboard interrupts

The calls:
breaks(true)

breaks(false)

enable and disable the stop key respectively.

The default is breaks (true).

9.7 Random Number Generator 7

The function random :0..255 gives a random no. between 0 and 255. A

pseudo-random generating sequence is used but this is initialised by

timing all keyboard inputs and is also "kicked" frequently by the

PASCAL interpreter.

The construction

random+(random mod 128) #256

generates a random no. between 0 and MAXINT, while

random mod n+1

generates an (almost) random no. in the range 1..n if n is not too

large.

g.8 Undersecore

The character '_' (shifted $) is allowed as a letter in identifiers

giving improved readability.

9.9 The CRM internal clock

The clock may be examined by using the three functions :

hours : integer

minutes : integer

seconds : integer

and may be set using the procedure settime (h,m,3 : integer).

96

TCL Pascal = commodore

COMPUTER

Example:

settime (12,47,00);

Sets the clock to 47 minutes past midday and

writeln (hours, ':', minutes, ':', seconds);

would print:

12: AT: 0

9.10 Input of String Variables

String variables (ie packed arrays [1..n] of char) may be read from

textfiles in a similar manner to characters, integers and reals.

Any leading spaces or newlines are first skipped, then an entire

line of characters is read from the file into the string variable.

If the string is too long, it is truncated on the right, if it is

too short it is padded out with spaces.

A major application 4s for inputting file names from the console.

9.11 Program chaining (disk mode only)

The TCL Pascal command :

chain (filename)

stops execution of the current program and invokes the program

named. The value of GLOBAL variables will be preserved only if

declarations are identical in the old and new programs. All files

are closed.

The filename can be either a string or a string variable. (If a

string variable, at least one space must be used as terminator).

When used under the EX command, a ".obj" extension is implied.

When used in a LOCATED progran, the chain command simply executes

the DOS support function "4", so that it is also possible to chain

to a BASIC progran.

97

TCL Pascal = commodore
COMPUTER

Example:

file "progi"™ (object code in ®progl.obj"):

begin

writeln ('First program');

chain ('Prog2')
end.

file "prog2" (object code in "prog2.obj"):

begin

writeln ('Second program');

chain ('Progi')
end.

The command

ex prog!

would cause the following to be printed:

First program

Second program

First program

Second program

until the stop key is pressed.

Program chaining is a useful technique for splitting up large

programs, or for menu-driven applications.

98

TCL Pascal = commodore
COMPUTER

10, TCL Pascal interface guide

The purpose of this section is to provide all the necessary

information to write 6502 machine language subroutines for TCL

Pascal programs.

10.1 Assembly language format

Assembly language routines are declared as Pascal functions or

procedures but the body is replaced by the word "extern" followed by

an integer constant (the routine address). Any parameters are passed

on the stack and should be removed by the assembly language routine.

The routine should also push a return value on the stack if it is

declared as a function. The best way to describe this is by

example, so here is a simple function to add two integers:

program test;

function addxy (x,y:integer) :integer;

extern $7400;
begin

write (addxy(3,4))
end.

This should result in the output:

T

Provided that the assembly language routine is correctly located at

memory address 7400h:

99

commodore

COMPUTER
TCL Pascal 4

$2A ; Pascal stack ptr

$7400
addxy ele

ldy #0

lda (sptr),y ; low byte y

ldy #2

ade (sptr),y low byte x

sta (sptr),y ; low byte result

dey

lda (sptr),y ; hi byte y

ldy #3

ade (sptr),y ; hi byte x

sta (sptr);y 3; hi byte result

elec

lda sptr ; pop Y, leave result

ade #2

sta sptr

bee addrts

ine sptr+l

addrts rts

sptr
s

we

Note: the top-of-memory pointer at locations $34-35 should first be

set to $7400 or below to prevent Pascal from overwriting these

locations.

10.2 Storage formats

All scalar and subrange types (except REAL), and pointers are passed

as 16-bit words in the usual low-high format.

Reals are passed as 6 bytes; in CBM BASIC format.

loc n+5: unused

loc n+4: LS mantissa

loc n+3: .

loe n+2: .

loc n+i: MS mantissa

loc n exponent

Arrays are stored row-by-row (the opposite to FORTRAN), the lowest

element has the lowest address.

Arrays are byte-packed if their elements are scalars in the range

0..255 (eg. char), and "packed" was specified. In this case the

size is always rounded up to an even number of bytes.

Records are. stored with their fields in reve.se order (first

declared has highest address). Sets are passed as a 128-bit map, a

"one" indicates membership. Odd and even bytes are reversed:

100

TCL Pascal * commodore

~~ COMPUTER

loc n+15: bit 15 bit 8

loc n+14 bit 7 ...- bit O

loc n+1 bit 127 ... bit 120

loc n bit 119 ... bit 112

IMPORTANT - pointers always point to the location above the highest

byte used by the actual data. This also applies to VAR

parameters, which are passed as addresses.

Example:

const VDUSIZE = 1000; (# 25 rows of 40 chars *)

type screen = packed array [1..VDUSIZE] of char;

var vduptr :tscreen;

begin

origin (vduptr,
.
°

This declares an

$8000 + VDUSIZE)

array based on the CBM vdu address 8000h.

vduptr+[1] is the first vdu location.

101

