e 2y it o T I

. 4032 (8032 feT

| @ bagn@ @@mpnﬂ
5 ;:by Drive Te@hmcﬂogy

Rdataview

Vst Qrs 1069 insdd Jyp ONT

L
~ \...-/

b

e

. Copying of either disks or manualk .or the“%

SP & — Btin 6 C

DTL-BASIC

Copyright

The contents of this manual anda the dlSkS supplled w;th the manual- éié;,.

copyrighted (c) 1981 by Drive Technology Ltd

;transmlttlng of
contained herein by any means -whatsoever whether mechanlcal
or electronically is strlctly forbidden. Users: are: remlnded that
condition of purchase is-the acceptance that copyrlght rests'w1th Dr
Technology Ltd. and that full respons,bllty rests:with the r: :
user to protect .such copyright. Copies of 1nd1v1dual flles may . beﬁﬁ e. .
for security uses only by the- reglatered user.‘ . , o

License

DTL-BASIC is licensed to the registered user on the clear and explicit
understanding that compiled programs, whether or not owned by . the
registered user, shall not, by way of trade or otherwise, beée: lent;
re-sold, hired out or otherwise circulated. The registered u '

BTL- BASIC is licensed to compile programs for the sole use oﬁ--the

user.

Where a user wishes to circulate copies of compiled programs, :then
details of the necessary license may be obtained from the Distributorsi’

A further condition of license 1is that DTL-BASIC and all programs -
compiled by DTL-BASIC may only be used in conjunction with the securlty,;
key (or keys) supplied with the product or. w1th ad itional “
supplied by the Distributors. = . :

Scope

DTL-BASIC should only be wused to compile programs that. a#eﬁ
purchaser's property. Programs that are licensed for # use"by
party may have their copyright violated if comprled The purch-
advised to check with the program suppller\ before con;l.
programs that are not owned by thé purchaser. - e TS

Unless the Distributor is contacted in wr1t1ng w1th1n lO days from the
shipment of this program, it shall be assumed by "the - Dlstrlbutor' that
the registered user has read and fully accepted the above condltlons

Reg. USerc.icicicecesnmocscoccns

Serial No. ..b\:ﬁﬂgf;....;ﬁa,.,,a Sole Distributor
:) Dataview Limited
Portreeves House
East Bay, Colchester
Essex, COl 2XB, England
Tel: Colchester (0206) 865835
Telex: 987562

i
&
i
(
L

T

. .
.
. i
. s T
: N :)
v
- : ’
- .
1 >
P 4 .
'
. RN
N : i
: " i
PN
L1 . . ‘
- '
e 5 P
< N 4 . .
R .
sy .
'

o

DTL-BASIC Release 5

IMPORTANT NOTES

1. DTL-BASIC version 4 (for the CBM 8096) works id conjunctlon with-
SYSTEM 96 and requires release 1.1 of SYSTEM 96 or /a later 'release
DTL-BASIC will NOT work with release 1 of SYSTEM 96/

2. Release 5 is at present only available for vergion 4 (ie. not for
versions 1,2 &3). The remaining versions will be/upgraded at a future:
date. '

Changes from Release 4.

l. Release 5 introduces version 4 of DTL-BASIC for the CBM 8096 running
under SYSTEM 96. This allows Basic programs requiring up to 78K. of
memory to be compiled. Note that the existing version 3 of the compiler
will also run on the 8096 for programg’ that do not require more than
32K for Basic (see section 1). o

2. New facilities .are provided to give a powerful overlay system = see
section 7.

3. A control file facility is provided to enable a number of programé
to be compiled with a singij/;ﬁn of the compiler (see section 4.3).

4. Release 5 is even more /compatible with the CBM interpreter. as:
chained programs may now shiare variables (see section 7). In addition
CONT may now be used with/compiled programs (version 4 only)‘ '

. 5. The compiler can now/compile files with upper- case characters 1n the
file name.

6. Compiled programé will now work satisfactorily with assembler
routines that move /[fhe array list at run time.

7. A number of mihor faults have been fixed.

8. New directives are provided to disable and enable the Stop key
without affecuﬁng the clock. Note that release 4 programs .that POKE
location 1072 to achieve the same effect will have to be altered when
used with E?lease 5 (see section 4.6).

/

/
/WQW,\LW[P \/MZ

9

Contents

Introduction.

General Description of DTL—BASIC.
Installation of DTL-BASIC..
Operation of DTL-BASIC.

Integer Arithmetic Facilties.
Making the most Qf DTL-BASIC.
Chaining and Overlaying programs.
Errors.

Use of Security Keys.

10. Compatability.

Appendices.

A.

B.

cC.

D.

What is a compiler ?
Summary of Compiler Directives.

Error numbers.

Use of ROM chips with compiled progréms.

1. Introduction.

DTL~-BASIC is a Basic compiler for Commodore machines and 1is fully (:)
compatible’ w1th the Commodore Basic Interpreter (with a few very minor
eXdeptlons) : S

ThlS manual descrlbes how to use and operate DTL-BASIC. The manual does

not try to® define the'Basic language or to teach Basic programming as
these: slbjects should .be adequately covered by the Commodore
documentation. : C -
Readers of this manual who are not familiar with - the differences

between interpreters and compilers should refer to Appendix A.

vt

Four ‘versions of DTL-BASIC are available for the following machines :

'DTL—BASIC available at
. version Machine release
1 CBM 3032 4 «
—_—t e D CBM 4032 4 == O
e 3 CBM 8032 4
4 CBM 8096 5

The release number indicates the level of Basic facilities supported;
ie. each release is intended to be upwards compatible:from'the previous
release and to have extra features to provide additional advantages to
-the user.

Throughout the manual, where references are made to features that are
specific¢ to™a partlculer version this will be indicated (eg. version 5
only), similarly<where a -feature is available only -from- a certain
release this will also be indicated (eg. release 5 or later).

Please note R

A

1 A program complled by Ver51on 1 w1ll only run on a 3032,

2. A program complled by Version 2 w1ll run on an 8032 as well as a CD
4032. - ~ '

3. A program compiled by Version 3 will run on a 4032 as well as an
8032. . '

4. Version- 4 -runs on SYSTEM 96 on an 8096 and produces programs that
also run of SYSTEM 96. SYSTEM 96.is.a language system for the CBM- -8096
that~éhables - Basic programs of up to:78K- (46K for program & 32K for
data) to be'run. Wlthout SYSTEM 96 the 8096 can only support programs
of~up” to"32K. T “ ; : :

SYSTEM 96 can be obtained from your DTL BASIC suppller

5. Version 3 may also be used on an 8096 and does not need SYSTEM 96
but in this case Basic programs will be restricted to the normal 32K
limit as on the 8032. Users of the 8096 who do not require Basic
programs of more than 32K total size (ie. program plus data) and who
wish to access the extended memory via assembler code (eg. via the
Expanded Basic package supplied by Commodore) should use version 3 of
DTL-BASIC.

T

he main advantages of DTL- -BASIC are : Do
-compiled programs run much faster than on :the 1nterpreter‘;aTneﬁ
speed improvement depends to a large extent wupon the sizey ,and:
nature of the program and wupon _the :time involved in ~ fixed
overheads that cannot be speeded up -:(eg. disk accesses: and’
printing) but statements within very large programs ‘can run up ko
20 times faster. However, a typical overall improvement.for. large:
programs is probably 4 to 8 times faster and existing . programs::
which have already been worked on to minimise the overheads of the
interpreter will probably be 2 to 5 times faster.
- the compiler is almost totally compatlble with the interpreter
so that existing programs can simply be recompiled without
alteration to obtain all the benefits of compilation (see section
10 for a list of the few incompatibilities). The very high’ degree
of compatibility means that programs may be developed on ~ the
interpreter (as this is easiest for debugging) and when working
can be compiled. |

- the compiler implements true integer arithmetic as well as real
arithmetic. The interpreter allows integers but converts them to
reals for all operations and real operations are very slow.
Therefore, " the wuse of true integer arithmetic can 1lead -to
significant speed improvements. Special facilities are provided to
automatically convert reals to integers when compiling existing
programs.

- the compiler will accept extensions to Basic implemented by
assembler routines in RAM or ROM (such as wused with Computhink
disks and such products _as Command-0 etc.) _.and in fact-;the.
compiled programs are compatible with the -vast: majorlty_,of*
assembler routines that are used with 1nterpreted programs.; \:*

- compiled code requires approxxmately 50-80% as much store “as
un-compiled code. However, for versions 1,2 & 3 there is a- fixed~-
overhead of about 16 blocks so that small/medium sized programs
are unlikely to achieve a store saving. For version 4 programs
should always be significantly smaller when compiled. ‘

- compiled programs cannot be'listed or aiteredAby a user.

- the use of the compiler can result in - significantly. reduced.
development and maintenance costs.

- from release 5 onwards the compiler provides powerful -Overlay.
facilities that enable several separately compiled blocks :of

program code to be in memory. at once. Each block may be .overlayed,
from disk independantly of the other blocks and a .program' in :one.
block may call subroutines in other ' blocks or jump into .other.
blocks. '

- compiled programs utilise stack’ space more - efficiently than _the
1nterpreter thus enabllng more complex programs to be run.

- the compller iE fast Compllatlon speed 1s typlcally 1-2
,‘:statements/second The compller itself is mainly written in Basic
o and is used to compile itself. Thls demonstrates’ that the compller
Cean’be used to compile very large, complex programs (the source of
“the compller is a file of 109 blocks)

£ Hie complled programs can, dlsable the stop key W1thout affectlng the
‘clock™

Section 6 describes the advantaoes_of_using DTL-BASIC in more detail to
enablevusers to fully obtain thevbenefits_possible with.rhe compiler.

C@

2. General Description of DTL-BASIC. P O T
This section describes the main features and eapabilities'of DTL:BASIC.

The original aims in designing.the compiler were - i
- that any program that will run on the 1nterpreter should be -able
to be compiled without modification;

- that compiled programs should run much faster than interpreted
programs;

- that apart from running faster the compiled programs should
operate in exactly the same way as un-compiled programs;

- that compiled programs should if - pdssible .be smaller than
un-compiled programs. : '

The first requirement listed above was seen as the most important as
there are many very large Basic programs and if the compiler applied
arbitrary limits to the size of programs that could be compiled then
many users would find that the programs that they -most wanted to
compile could not be compiled. Secondly it was felt that although a
compiler has many advantages over an interpreter the great feature of
an interpreter is the ease with which a program may be debugged.
However fast a compiler is to compile a program it will almost always
be faster to develop a program using an interpreter. Consequently the
major aim was to achieve almost total compatibility with the CBM
interpreter thus enabling the compiler and. the interpreter to be -used
together so that program developers can take advantage of the best

features of each system.

‘The second requirement was to make compiled programs as fast as
possible. This requirement to some: extént conflicts with the first in-:

that if the compiler was made to produce the fastest compiled ° programs
possible, then the programs would be very much larger than un-compiled
progryms and often would' be too large to fit in the machine. '

DTL-BASIC has been designed to achieve the ideal balance between speed
and size so that compiled programs will run much faster and will
normally require_less store than uncompiled programs. Note that' as
explained in section 1 then for -some versions: of the compiler
small/medlum sized programs may become somewhat larger when complled

It should be noted that it is 1mposs1ble to 'accurately predict - the
speed and size improvements for one particular program. = because this
depends very much upon the way the program is written. A program that
has been written to be as fast as possible and as small as possible on
the interpreter will not improve by the same factor as a program .that
has been written to be readable and easy to modify. : '

B

2.1 The User Interface.

Source

file

/'SourCe List'ing
DTL-BASIC |——#Compilation Errors

\Statistics

(relea 5 or' later) . all 'optional

(release 5 or later)-

FIGURE 1

The above dlagram shows. the main points of interaction between. the
compiler and the user. :

The Source file is the main input to the compiler and 1is a perfectly

standard Basic: program file,ie. the Source -file ‘contains’ a- Basic
program; ‘that .can: be. LOADed and RUN. The :file can' also’ be edited. and
,LISTed in the normal manner for Basic programs. : : g 3 oa, PR

'The Object file: is the main output from the compiler and contains . the
'complled program. As far as the interpreter and DOS are concerned this
file is also a program file and can also be LOADed and RUN. However,
beécause the. file contains the compiled version of the source file it

cannot. be edited .or 'LISTed. Changes can:only be made to an object ‘file

:by edltlng the source file and re—compllxng.

The LN (Llne Number) flle is essentlally a workflle of the compller and

- is used to relate line-numbers to. their addresses within -the Object
file (the Object-file does not: contain any line numbers). The - LN file

is. not. required to- run the program and may be SCRATCHed. However, if

‘the program i's not fully debugged ‘the LN file should be retained as - it

can be used to locate run. t1me errors by the- ERROR LOCATE program (see
section 8.3). .

“The VL (Variable List) file is used to contain the wvariable 1list for

use by the compiled program; the wvariable 1list 1is «created by the
compiler to save the compiled program from having to create the
variable list at run-time. The VL file is not always created because in
some situations the the variable list is included in the object file.
The VL file 1is «created when the variable 1list will not reside
immediately following the compiled program at run time.

O

@,

b

This occurs in two situations

- whenever version 4 is used because SYSTEM 96 stores the variable
list always at the same address and separate from the program;

- when the Overlay facilities are in use;

In such situations a compiled program w1ll not run unless the VL file
exists on one of the two disk drives.

The VN (Variable Name) file is created by the compiler when a program
using the overlay facilities is compiled (available from release 5
onwards). The file is necessary because individual programs that are to
work together as overlays normally share the same wvariable 1list. For
this reason when an overlay is being compiled it is important that the
compiler knows the identities and addresses of all the variables that
are used by the overlays that have already been compiled. This is
achieved by means of the VN file.

When the compiler is run it can be instructed to list the source file
on the printer whilst it is being compiled.

" The compiler performs exhaustive.syntax checks and an error message 1is

output for each error found. The compiler.can output the error messages
to either the printer or the screen. If errors are output to the screen
the compilation is suspended when the screen is full of error messages
so that the errors may be noted before the compilation is resumed.

The statistics that can be produced by the compiler relate * to the
Object file and give the size of each of the main sections within ° the
file (see section 2.3). This information 1is provided to enable : the
programmer to see how the store is being used. It is important to use
the statistics when comparing the size of compiled programs with
uncompiled programs (rather than simply comparing the- flle sizes). This
is because in some situations (as has already been explained) - the
Object file includes the variable list (ie. the list of all non-array
variables). This means that the Object file may be several blocks
larger than the actual program size. In such a situation the statistics
given by the compiler include both the actual program size and . the
Object file size.

The Options file is used to record the options selected by the user
when the program is run,ie. ’ s : I

- the Source file name;

- the Object fiievname;“

- whether the source is to be listed;
- whether errofshare,to be listed;

- whether the: statlstlcs are requlred

= the text message to 'be wused to- 1dent1fy any- 11st1ngs.¢

When the compller is run it looks for the Options' file and 1f it exists
then the data is displayed to the user: who can “~change the data 'if
necessary before starting the compilation. Often -when 'a program is

compiled a number of times the options will not neéed-to be changed and

the user will avoid a lot of repetitive typing.

O

r\ 2.2 The Internal Structure.

Fd

Source

file

Data

: Source Listing
file : Pass 1 T———————sSyntax Errors

(release 5 or later)

Pass 2 |———prUndefined line errors

\\\\\\\\ﬂ58tatistics

(R5 or later)

FIGURE 2
This section describes the internal working of the compller 1n‘ more
detail. The figure above is the same as figure 1 with additional detail
added to show all the files involved during compilation.

DTL-BASIC is a two pass compiler,i.e. it processes the program twice to

(\ produce the Object file.

The main stages involved in the first pass are :

- the Options file 1is read (if it exists) and the contents
displayed to the user.

- the User changes (or inputs) the option data as necessary and
starts the compilation.

- the compiler deletes any existing Options file and creates a new
one,

- if a directive is found indicating an overlay then the VN file
is read to memory (if one exists).’

- the specified source file is opened and is processed statement
by statement. Whenever a line number is found an entry is made in
the LN file. If a statement is a DATA statement it's contents are
output to the Data Statement file. For other statements the syntax
is checked and code is output to the Semi-compiled file. This code
is not complete because any line numbers will have not been
converted to an adddress.

- as each line is processed then if source listing was selected
then the line is output to the printer. :

- if a syntax error is detected an erfqr message 1is output to
either the screen or the printer. :

At the end of pass 1 the compiler has built up internally a list of all
variables and knows the amount of memory required for compiled code and
data statements. It can therefore calculate the addresses of all
variables and it also has (in the LN file) the address of each line.

The operations involved in pass 2 are

- the Object code file is created and if necessary the contents of
the Run-time library file copied to the Object file.

-~ the contents of the Data Statement file are copied to the Object
file.

- the Semi-compiled file and the LN file are processed together
and the code for each statement is first completed .by changing
line numbers to addresses. The completed code is then . output to
the Object file. ‘ ‘

- as. the code is completed any references to non-existent lines
are detected and an error message is output.

- once all the completed code has been output to the Object file
then the Data Statement and Semi-compiled files are deleted.

- if necessary the VL file is created (if not the varlable list is
appended to the Object file).

G 1f an. overlay flle is belng complled and some new ‘variables
| o names have been found during the compilation then.a new VN file is
’ created.

| - the compilation statistics are output (if required).

O

-

2.3 The Object file structure.

Run-time ' Data : Compiledi Variable

Library ! statements | code I list

(optional) © (optional)
_FIGURE 3

Figure 3 shows the internal structure of the Object file.

‘The Run-time library is a set of routines that are ihéorborated in each

compiled program and which implement such functions as integer
arithmetic, FOR loop control etc¢. In version 4 the Run-time library is
incorporated within SYSTEM 96 and is therefore not needed with the
compiled program. b

The Data statements section consists of the text from all Data
statements in the program . ‘

The Compiled code is the actual program and consists primarily of calls
to routines that are within the Run-time library.

The Variable list contains an entry for each scalar variable (ie. each
non-array variable) used in the program. The format of the variable
list is the same as the ‘list used by the interpreter. The Variable list
is included in the program so that it does not have to be re-created
every time that the program is run as is the case for the interpreter.
In version 4 or when the overlay facilities are 1in use. then the
variable list is not in the Object file as it will not necessarily be
stored immediately following the program. In such cases the wvariable
list will be loaded to memory from the VL file.

Note that a facility is provided to create an Object file without a
Run-time Library for versions 1,2 & 3 (see ** NL command in Appendix
B). This facility can be used for programs that are never run on their
own but are always LOADed from other programs (so that the Run-time
library will already be in memory). The advantage is that the Object
file will be significantly smaller and will therefore occupy less disk
space and will LOAD faster. ‘ ')

3. Installation of DTL-BASIC.

Contents.

DTL~-BASIC compiler disk
DTL-BASIC manual

'Compiler' security key -- -
'Run~time' security key

DTL-BASIC is supplied on a single fioppy disk which is write protected
and the first action should be to take several copies of the disk for
backup purposes. .) o _ -

In order to protect Drive Technology S copyright and the copyright of
fDTL BASIC users ~over their “own programs DTL-BASIC incorporates. a
protectlon feature that ensures that the compiler and complled programs
'‘will only run in the presence of a special. securlty key attached to one
of the machine's cassette ports.

The security key marked 'Compiler' supplied. with DTL-BASIC must be
‘fitted to one of the cassette ports before the compller will run. Each
CBM model has two cassette ports (refer to your Commodore manual if you
do not know the location of the cassette ports) and the Compiler key
may ‘be fitted to either. It is important to fit the key the ' correc¢t
way;ie. ensure that the labelled side faces upwards.

A second key marked 'Run- time' is supplled to enable complled programs
to. be run on a second machine. ' If it is required’ run- compiled
programs on a number of machines then addltlonal 'Run{tlme' keys may be
'obtalned from the Dlstrlbutors =)

ok *‘»‘******'***‘***‘****Ji * * X %
- IMPORTANT,

Always ensuré that the machine is switched
off before fitting or removing a security
key that is fitted internally, eg. to

the first casettte port on a 3032.

A v
* Ok % % F F % ok ¥ ¥

* "k k Xk k k k k k k *k *k k k k k *k *k *k *k *k *k *x %k

~

4, Operation of DTL-BASIC.

4.1 Operating Instructions.

DTL-BASIC has been designed to be very simple and easy to use.
To run .the compiler : u{&ﬁTﬁ Vs — we vse VersioV 21‘

-if using version 4 of the compiler then first ensure that SYSTEM
96 is installed on the machine. Once SYSTEM 96 is initialised then
the SYSTEM 96 key may be removed if required; -

-insert the compiler disk in drive 0 and the disk containingi the
program to be compiled (ie.the Source file) in drive 1;

-ensure that the '‘Compiler' security key is fitted;

-if the compiled program is to be 'keyed' to a key other than the
'Compiler' key then ensure that the other key is fitted as well
(see section 9);

-load and run the first program.on drive zero;

The compiler Will display a list of options on the screen. If it is the
first time that the compiler has been run on the disk in drive 1 then
the option input fields will be blank. Otherwise the fields will

display the options selected the last time the compiler was run on that

disk and it will only be necessary to type in any alterations. -

On the first run the option input fields will be blank -and it ‘Will' be
necessary to type :

-the name of the Sdurce.filé.

-the name of the Object file (ie. the name .to be wused for the

compiled program). Any existing file of this name on drive 1 will
be overwritten.

If no listing is required simply key 1 to start the compilation. The 4
key is normally used to start the compilation and indicates to the
compiler that the information displayed is correct and the compilation
is to start. ‘

If any form of listing is required then answer Y or N to the remaining
questions (followed by Return). Before typing any field 4 can be keyed
to start the compilation,ie. a blank field indicates a No answer.

If the printer is to be used the compiler will first print a heading
containing the data from the screen. The contents of the 'Run Identity'
field are included in the heading so that individual 1listings can be
identified. For example the 'Run Identity' could be the time and/or
date so that when a number of listings are produced their chronological
sequence can be determined.

4.2 Operating Notes

1. The compller requires a 32K machine with disks but dependlng upon CD

their size compiled programs may run on 8 or 16K machlnes and may be
loaded from cassette. o :

2. As explained earlier the compiler performs two passes of the source
program. -During each pass the line number being processed is displayed
and any errors detected are displayed on the screen or printer
dependlng upon the optlon selected (see section 8).

3. If any output is to be made to the printer the compller will check
that the printer is ready before starting the compilation;ie. that the
i/o status variable ST equals 0. If ST 1is not equal to zero the
compiler will wait until it -either becomes zero or wuntil a space is
pressed (the option to press spdce is provided ‘because some' - printers
are non-standard and have a non- zero ST value when they are ready)

4. As was explalned in section 2 the compller creates several files on
drive 1 so that a certain amount of free space must bef available when
the ‘compilation ‘starts (the amount of space 'needed .depends wupon the
size of the program being compiled). = 7 d :

5. When the options are displayed before the start' of a conipilation
then if the user can not correctly recall the name of the file to be
compiled the dlrectory from drive 1 may be displayed by keying @. 1If
the wrong disk is found to be in drive 1 then / may be keyed to ~enable
the dlSk to 'be changed Fe A

6. At the end of the compilation the work files W1l and W3 are
automatically deleted but if for some reason the compilation 1is not
allowed to complete normally then the files may be left-on Drive 1. 1If
this occurs they will be deleted by the next compilation or may be
deleted manually. LR o S

7. If for any reason it is not required to proceed with a compilation
(eg. because the file disk is full) then < should be keyed to exit from

DTL BASIC

o NeT U we hara ‘ : '
8; From release 5 onwards the compiler deletes the Object file ‘at the
end compilation if any errors are found during the - compllatlon' (see
section 8 for a description of possible errors). This is done to ensure
that' the occurence of errors at complle tlme cannot. be missed by the
user., .

Q

O

A

"then

4.3 Special Operation Features

1. The compiler allows the user to specify any name for the Object file

but if the last four characters of the Source:-file name are "-src" the.

the object file name will be generated automatically.
e.g. if the Source file name is
"test-src"
then the compiler will call the Object file

lltest "

2. If it is required to compile a number of files then they may all be
compiled individually or a Control file may be created to ~enable them
all to be compiled in one run (release 5 or later). Y.V oS -

to "-con",eg. "compile-con".

A control file is a normal program file that cortains a 1list of file
names. Each file name should be on a separate line and the first
character of each line should be a quote chafacter (").

The first file name should be the name o
compile and the second file name
corresponding Object file (unless the
case the compiler will generate the
The next file name will be the n
compile and so on . . .

the first Source file to
hould be the name of = the
"-src" option is wused 1in which
bject file name automatically).
e of the second Source file to

eg. If the contents of the Cghtrol file are :

10 "filel
20 "cfilel
30 "file2
40 "cfile2

50 "test-src
Then 3 compilations will take place, ie.
"filel" wi

"file2" wj
"test-sr

be compiled to give "cfilel"
1 be compiled to give "cfile2"
" will be compiled to give "test"

To start/the compilation the name of the Control file should be given
instead/of the Source file name. The printing options selected will
ply to all the compilations from the Control file. It is
stropgly recommended that the option to print errors should be selected
to.ensure that any errors are not lost.)

3. The 'Run Identity' field of the option display enables listing to be
identified. One simple way of using this field to ensure that the
correct chronological sequence of listings may always be determined is
to input a 'Run Identity' of % 1. The compiler makes 'a special check
for the ¥ and then expects to find a number; when the compiler
re-writes the Options -file it will increment the number found. This

O\ means that if the same file is compiled a number of times the 1listings

will be numbered in ascending order.

reboy ¢

A Control file should have a name which has the last 4 characters equal .

4.4 Operation of compiled programs

1. Compiled programs are simply loaded and run- just . like un-compiled Cj

programs ‘and should.perform exactly "the same. If. they do not work. as.

expected the see section 4.5.

2. For version 1,2 & 3 then when CONT would be wused for . uncompiled
programs SYS 1069 should be used for compiled programs. The program
will crash if CONT is used. ' :

For version 4 CONT may be used exactly as: for uncompiled. programs . (SYS
1069 should not be used).

3. When a program is run ‘for which a VL file exists then the VL file
will automatically-be loaded to memory the first time that the program

is run. If theé VL file is not found on either disk. then, a FILE NOT

FOUND error will occur.-

“
|

4.5 Problems ?

(\ l. when a compiled program runs then if the system. it totally
re-initialised (ie. does a 'warm' start) then check that the correct
security key is fitted with the labelled side upwards.

2. When compiled programs run then thorough run-time checks are applied
and may cause the program to stop (see section 8.3). If the error
cannot be explained then check that uncompiled program works correctly.
If it gives the same error then correct the fault.

i Nor O3 —Jelbion 2~
¥ 3. If an unexplained "FILE NOT FOUND" error occurs on version 4 or when
i

the overlay facilties are in use it is probable that the VL file does
not exist. Note that this file must not be renamed after being produced
by the compiler; the Objectrfile may be renamed but not the VL file.

E 4. For version 1,2 & 3 it is not possible for one compiled program to
| LOAD another unless the second is also compiled.
A
i

5. If the result of arithmetic appeaf to be wrong or the compiled
(ﬁ program appears to be running but is not performing correctly then it
is likely that special Integer mode must be selected (see section 5.4).

b

G 6. A compiled progrém should not be SAVEd to create a new copy of the
! program once it has been RUN.
|

7. When compiled programs are to be used together (ie. they 1load each
other) then all the programs must be compiled by the same: version of
the compiler at the same release number (the release number 1is the
second digit of the compiler identifier, eg. DTL-BASIC 2.4 is version 2
release 4).

j (TB. The comgller will not run correctly if the DOS support -utility is

‘;k loaded. . _
9. When compiling programs from a disk drive with DOS 1 (ie. a 2040 or
3040 with the original ROMs) then then the Source file may become

corrupt if it is compiled immediately.after being RENAMEd. The solution
is to INITIALISE the drive after a RENAME.

A %

4~6-Pregramming Notes

1. If one’ program loads another program (eg. vie a DLO?D or LOAD) " then
the source file will ' have to be RENAMEd before compilation. For
example, if there are two programs in files PROGA and ' PROGB and they
are compiled to produce the Object flles C -PROGA and Cc- PROGB, and if

-PROGA contalns the statement

DLOAD "PROGB"

then when C-PROGA runs it will load the source of the second program

‘rather than the Object file. 'The best solution- would be to 'RENAME the
files to be 'PROGA-SRC and PROGB-SRC before ' starting ‘the compilation.
‘This would produce Object files called PROGA and PROGB respectlvely 'so

that the DLOAD statement would work correctly.

2. Compiled programs can disable the Stop key in exactly the “'same = way
as under the interpreter. However there 1is an additional means - of
achieving this for compiled programs that has the advantage of _ not
affectlng the clock and makes ‘compiled programs marglnally faster.,,

The method of doxng this is different for release 5 from that ‘used 'in
release 4. This means that programs being moved from release 4 to
release 5 may need a slight alteration. o ' ‘ T
Release 4 - to dlsable the stop key use POKE 1072 1 and use POKE 1072,0
to enable it. :

Release 5 - to dlsable the Stop key use REM ** DS and use REM k% ES to
enable:it. N

3. It has already been stressed that it is desirable, to be able to run

a program in both complled form and uncompiléd form.' In some situations

there may be a few statements that are required to be executed when the.

program is compiled but not when it is wuncompiled (and vice versa).
Thls may be achleved by means of a simple test of. the form 3 - o

‘CP = PEEK(PEEK(41)*256+peek}40)+4) = 158

this will set CP to the value 0 in an uncompiled program and -1 in a

compiled program. CP may then subsequently be tested as required, eg.

IF CP THEN PRINT "THIS PROGRAM IS COMPILED"

Note that the test used to set CP 1is actually testing the first
character of the first line of the program (which 1is always the §SY¥S
token (ie.l158) in a compiled program). The test will therefore only
work if the first line of the uncompiled program does not start with
SYS.

4. ease 5 of DTL-BASIC compiles standard CBM Basic plus the
extension ov1ded to’ support the Overlay system (CALL,ENTER,OQOLOAD
etc.). These exte use token numbers that are unused by CBM Basic
but which may be used by user's own extensions (implemented by
assembler subroutines). In suc situation the the compiler can be
instructed by means of a REM ** NE tive to not compile any of its
own extensions but to treat any non standa tokens as user extensions.

Nt O3 .

A

~ 5. After a—compilation then if compiled programs are copied to < another
_ disk then any VL filés—should be copied as well as the Object files
(there is no need to copy the iles).)

Chnvot vsE 'Dﬁ# W IF STmT ? /= ,%{_—_ rs{ THEV - - .

— e

»

S.vse DzY=s¢ rrp pzfoTsE e -

MI}ST SPACE GUT HC)/Z" N IF STtm7T e

IF 48= 8% oRcd =D4 eV —- - VVZ“/’;V(
- D vse TEM=kd oR cg=2dTeen - - -

(@"’VUEKT(NZ', t v—:%ﬂ—d —(ﬁmvs W s W%(ﬁms—;o-‘t W7
l/w’{? (m‘o‘/{‘. ? "fr;‘/é w_us P e /‘,;4 % wwvof/é' /onz’;: fnz
Wyb& WMWﬁ%WM;%W ".,/’/“7

“5. Integer Arlthmetlc Fac111t1es..

~Commodore Basic supports integér -as. . well: - as real variables. 63}

Unfortunately, the interpreter does not perform.true integer operations
as it converts all integer values to real format before performing any
operation. The result of the operation 1is then converted back to
integer. A consequence of this is that if integers are wused then the
program will actually run slower because of the mode conversions on
each operation. For this reason most ex1st1ng programs do not use
integers even though the vast' majority of "variables normally hold
integer values. Integers are sometimes used for arrays as this gives a
space saving., s
DTL-BASIC differs from the interpreter in that it implements true
integer operations for all operators when both operands are
integer,i.e. all arithmetic,boolean and relational operators. New
programs which are to be compiled should therefore use integers
wherever possible.

The arithmetic package within the Rﬁn—ﬁihe>Library has been designed to
achieve true compatability with the interpreter and to ensure that the
best results are achieved it will help, to understand the following
points :

1. Wherever possible parts of expressions are calculated 1in integer

mode and the result converted to real where necessary, e.g. 1in the

1_«expre551on = v i P LT g . - - ¥z

A = JR*(I%*1046) +.B’ r

the underlined section would be calculated in integer mode and the
result converted to real for the rest of the statement.

2 Whilst in integer mode then 1if integer overflow occurs the
operands are converted to real and the operation is repeated 1in real
mode, e.g. in the above example if I% holds 30,000 then the integer
multiplication by 10 would cause overflow as the value would exceed 32K
and the operation would be repeated in real mode.

3. If integer overflow is very likely the programmer can avoid it by
‘using real constants.

eg. if the .above statement is written as :
A = J$*(I1%*10.0+6) + B
then all operations will be in real mode.
4. Special consideration is needed for the operators 'divide and
exponentiation because when applied to integer operands they can yield
a frectional result. The compiler cannot know whether the programmer
requires the fractional part or not,e.g. the expression.

3/2*4

will yield 4 if integer operations are used and 6 for real
operations.

O

M
n

If not instructed otherwise the compiler will perform integer divide
and exponentiation when both operands are integer (the above example
would therefore normally give the answer 4). This option was chosen

because it is what the programmer most often requires ‘and because it
runs the fastest.

If the prograammer wants a real divide or exponentiation then the
Special Integer mode should be used. This mode can be selected by
including the statément

REM ** gT
before any statements (other than REMs) at the start of the program.

5. If an existing program is being compiled and any problems are found
with the results of calculations then special integer mode should be
used as this makes the arithmetic fully compatible with the
interpreter.

6. As has been explained programs that use integers as much as is
possible will run faster than if reals are used. This is no problem
for new programs because the programmer should simply use integers
whenever possible. However, it is not so simple for existing programs
as it can be a lot of work to change many variables to 1ntegers and the .
edits may introduce errors.

"DTL-BASIC includes a special feature that can convert variables (both

scalars and arrays) automatically to integers without any changes. to
the program. There are two ways of doing this depending upon the number
of variables to be converted.

The first method is to use the ‘'Convert Specific' statement at the
start of the program. This statement instructs the compiler to convert
the named variables to integers, eg.

REM ** CS (Al,2%2,X2,X3)
This instructs the compiler that the named variables are to be

converted to 2 . In the example the 'variables will become
Al%,772%,X2%,X3%. The compiler will flag an error if wvariables with

‘these names already exist. In order to avoid name <clashes the <CS

statement can specify new names for some or all of the variables, eg.
if 22% already exists but ZQ% does not exist then the statement would
become :

REM ** CS (Al,Z2Z2 => Z2Q%,X2,X3)

Notesr ., o s, T

.= when a name change is speeified?then the first%Character“ef Zthe.CQ
" two names.must befthe same;

- there can be several CS statements but the maximum number of
variables that can be converted is 128;.

' if the variable to be converted has more than' .2 chracters in
it's name then only the first 2 should be used 'in a CS or CE
statement (this restriction does not apply from release 5
onwards) . ' :

when a large number of varlables are to be converted 1t W1ll be better
to use the second method of conversion. .This 1is specified . by- the
'Convert .Excluding’ _statement and converts ALL real variables excludlng
chose expllc1tly named, eg. .

REM ** CE ()
.wiil convert‘all reals}
REM ** CE (I1,I2,I3).
(:wiii'conuert alihreals_except those:named'll,12,13.

.The conversion rules are the same as for the CS statement and name
chashes can be avoided in a 31m11ar way, €9... I

'REM ** CE (A,B => B1%,C) .
will convert all reals excluding those named A and C. Variables named
B, w1ll be converted and will be converted to. BIl%.

iNote that 'CS and CE statements cannot both be used 1n the same program
but an SI statement can be used with either. Also, these statements
should be the first in the program. S

7. Even for new programs there may be.a need to wuse the CS. -or .CE
statements because the interpreter does not allow integer FOR. varlables
‘even though in most programs the FOR variables w1ll only hold. integers. C)
‘Therefore, if it is required to debug the. program using the. 1nterpreter
"then real varlables must- be used in FOR statements. When a .program is
:complled then the best performance will be. ‘achleved if a. €S or CE
tstatement is used to convert the FOR variables to integers. .

(\

o

6. Making the most of DTL-BASIC.

Thé most obvious benefits of using DTL-BASIC are :
~-the improved performance for all.compiled programs;
-the reduced size for large compiled programs;

-the compatability with the Commodore Interpreter.

There are several other benefits which are possibly not so obvious and
this section will describe these benefits in more detail.

1. The compiler will accept extensions to Basic implemented by
assembler code in ROM or RAM.

This sounds almost too good to be true but in fact it does work. What
happens is that when the compiler is checking the syntax of a statement
then if it cannot recognise the first character of the statement (ie.
if the statement does not start with either a legal token or an
alphabetic character) it assumes that the statement is valid but uses
an extension to standard Commodore Basic. The compiler embeds the text
of the statement in the program and precedes it by a special code. When
the program is run the Run-time library detects this code and sets up
the ‘appropriate pointers for the interpreter and calls the interpreter
(ie. the standard Commodore interpreter in ROM). The interpreter
processes the statement and providing the program has already inserted
Wedge code in page 0 (eg. by a SYS call or by POKEs) and the assembler
routine to process the statement is in RAM or ROM then the statement
will be obeyed. The compiler plants a SYS call after the special
statement so that once the statement has been obeyed the interpreter
returns control to the Run-library. See Appendix D for some notes “on
the use of the compiler with some common ROM chips. :

2. Compiled programs cannot be listed or altered by the user.

When un-compiled programs are run it is -comparatively easy for the
user, especially one who does not know much about programming, to
delete 1lines or to add new lines which will obviously have
unpredictable effects and can appear to be errors in' the original
program. Such accidental or intended alterations to programs can. 'cause
many problems. With compiled programs such problems are avoided.. In
addition, as compiled programs cannot be listed other programmers are
not able to copy individual routines or find out how a program works.

3. Use of the compiler can result in significantly reduced development
and maintenance costs.

Software development and maintenance costs have '~ always- been
frighteningly high. As hardware costs come down software costs continue
to rise. When programming in Basic on Commodore machines these costs
can be much higher than they need to be because of the bad practices
that have to be adopted to make interpreted programs as fast and as
small as possible.

These practices (some of which are advocated by Commodore in Appendix E
of their Basic manual) can result in programs that are exceptionally
difficult to understand and to modify.

Also ‘the program cannot be" organlsed as a set of modules. This means
that when new programs are developed then even if ‘they share a function
with an existing program. it is .normally not p0551ble to simply extract
dseful routines from the program without the routines requiring
modification and re-testing. If it is intended. to compile -a program
once is is working then none of these bad practices need be used and
the program can be made much easier to understand and to. change. . The
program can also be made more modular.

The bad practices referred to above 1nclude -

~declaring the most commonly used varlables at ~ the head ¢of -the
program;

-placing commonly used statements at the head of the.program;
-using each variable for many different purposes; »
-not u51ng many REMs, |
' —puttlng -as many statements as p0551ble on -one llne,-
['14—declar1ng all varlables before any large arrays are - declared;.
‘-not using any spaceshln the program, 4) |
.-replac1ng parts of the program by assembler subroutlnes Thls ls

. bad because assembler code is far more expensive to- develop and to
maintain than Basic. : : ,

If the program is to be complled the sort of techniques that can be
adopted instead. of those above. are : 5 e

-organising the program as a set of 1ndependant modules with all

related code -and varlables together'

"
P~

~ -preceding each module with a description of -it's function: and a
definition .of 1t s varlables in REM statements;

".—allocatlng each module a set of line numbers and varlables eg.

Module A could use lines 5000-6000 and only use variables startlng
with the letter A;

-definrng amsmall set ofﬂentry,points for each~module;m.

, —haying a -defined . interface between modules. ;

If such techniques are used then each module can be considered in
isolation from the rest of the program which makes .the module much-

easier to understand and to modify. Similarly when a new program is..to

be developed then.it is likely that modules ' can - be- extracted -from-

existing programs -and re-used without_modiﬁication or re-testing.

)

Use of DTL-BASIC can enable many bad practices to be avoided without
sacrificing performance and memory and if the above techniques are
used, or others 1like them, then it is possible to produce well
structured, maintainable programs (this 1is especially true if the
Overlay facilities are used). : .

4. Compiled programs utilise the stack more efficiently than the
interpreter thus enabling more complex programs to be.run.

Wwhen the interpreter runs it uses 18 bytes of stack for each FOR
statement (not 16 as quoted in the Commodore manual) and 5 bytes for
each GOSUB. When a compiled program runs 10 bytes are used for each FOR
(providing the FOR variable is an integer otherwise it alsoc uses 18)
and 3 bytes for each GOSUB. Compiled programs can therefore have a
greater depth of nesting than un-compiled programs. Compiled programs
can also evaluate more complex expressions than the interpreter.

5. Use of the Overlay facilities that are available from release 5
onwards (see section 7) can result in a number of advantages :
- the time involved in loading Basic code can be reduced;

~ the disk space required to hold a package of Basic programs can
be significantly reduced by the use of subroutine libraries;

- the use of subroutine libraries where only one copy of each
routine need be maintained means that development and maintenance
will be faster and more reliable (and will therefore cost less);

T Chalnlng and Overlaylng programs.

Program chalnlng is the practice of one program loadlng another program
"on-.top of .itself and for the second program to then: be .automatically
run. Chaining is commonly used to link a number. of programs together to
form a more powerful package than would be possible with a single
program.

Overlaylng is similar to chalnlng but rather than overwrltlng all the
the program code in memory only part of it is affected. Overlaying is a
more sophisticated technique- than chaining and generally - should give
better performance and greater. flexibilty. When overlaying is used- .the
program space.in normally divided into a number,‘of . separate program
areas or .overlay areas. The first overlay area is special and is known
as the Root area. The program in the :root 1is - responsible for- the
definition of the other overlay areas and for 1loading the correct
program overay -to each area when required. ‘ ;

A typical organisation for a simple menu driven appllcatlon package
would be to have three overlay areas used as follows L1 :

v b ok

overlay 0 - this is the root overlay and holds the menu program;

overlav 1 - holds the current appllcatlon program (this is 1loaded
by the menu :when the user selects an option); :

overlay 2 - holds a llbrary of all subroutines that are common to
two or more of the application programs. :

The advantages of overlaylng when compared to cha1n1ng Vfor . the .above
example are:

- the menu program is store resident giving faster response to the
user;

- only one copy of each common subroutine is required rather than
one for each application program- this makes for easier and faster
debugging and maintenance;

- each overlay program will be smaller than the equivalent program
in a chained system and this means less time spent loading program
code and less disk space needed.

DTL-BASIC supports both chaining and overlaying and the rest of this
section outlines how to use these techniques for the various versions
of the compiler that are available.

7.1 Release 4 facilities.
Release 4 supports chaining but not overlays.

When programs are chained on the interpreter then problems can occur if
the program being loaded is larger than the program in memory. This
problem can be overcome by POKEing the start of variable pointer before
loading the program or increasing the size of the first program in the
chain. Such practices are not necessary with compiled programs as each
program includes its own variable list in the program so that the
existing variable list is also overwritten. However, this does mean
that for release 4 it 1is not possible to share variables between
programs that are chained.

Whén chaining is used then the No Library feature (REM ** NL) may be
employed to omit the Run-time library from each program except the
first (see section 2.3).

7.2 Release 5 facilities.
Release 5 of DTL-BASIC supports both chaining and overlays. . O

The' chalnlng facilities are 1mproved from release 4 in that chained
program may share variables or may each have thelr own set of varlables

At'present release 5 is only available for version 4.
7 2.1 Program chaining in version 4.,

1f one program loads another program via a DLOAD or LOAD command then
the second program will share variables with the first. However, ‘this
will only work correctly if the first program in the chain is complled
with a ** RO directive (see below) to force the compiler to create a VN
file and if all the other programs are compiled with a ** VN directive
‘to make the compiler read the VN file. This < ensures - that all ‘the
programs are compiled to use the same variable addresses.

If it is not required to share variables between chained programs then
this can be achieved by not using either of the two directives C)
mentioned above and by preceedxng the call to DLOAD (or LOAD) by the
following statement :

"POKE 1204,0

I1f this technique is used then the program loaded will 1load its own
variable list to memory when it starts to run. The POKE statement will
have no effect when the uncompiled program is run.

Ay .

7.2{2~Erogram‘overlays in version 4.

Version 4 supports the Overlay facilities provided by SYSTEM 96 (see
section 5 of the SYSTEM 96 manual). This means that a package may be
developed and debugged un-comipled and when working may then be
complled : ' '

Two dlrective§ are provided by DTL-BASIC to enable overlays to be
successfully compiled : CD

- the Root directive REM ** RO

this tells the compiler it is compiling the root overlay and has
the effect that at the end of the compilation a VN file is
generated that records all the variables and arrays used and the
addresses allocated to them. The name of the VN file will be
"VN-<name>" where <name> is the name of the compiled root program.
There should only be one root program for each overlayed package
and it should occupy overlay 0 when it runs and should be the
first program of the package to be run.

- the Variable Name directive REM ** VN "“<name>"

this directive tells the compiler that it is compiling an overlay
and that the compiler should access the file "VN-<name> to find
the names and addresses of all variables and arrays that exist in
the root overlay and the other program overlays that have already
been compiled. At the end of the compilation then if that overlay
has referenced any names that were not in the VN file then a new

VN file will be created that includes the new names.

L — S— A S N—

To summarise, the root overlay should include theé statement

REM ** RO

at the start of the program and all the other dverlays should include
the statement of the form)

REM ** VN "MENU"

(in this example MENU is the name of the root).

Notes.

1. There 1s a restriction for all overlays other than the root that DIM
statements must be used for all arrays that are dimensioned in the
overlay,ie. arrays without DIM statements will not be automatically
declared. The compiler checks for this case and will flag an error if
no DIM statement is found for any arrays that are . not..explicitly
dimensioned. Note that this only applies to arrays that are dimensioned
in that overlay,ie. those that do not exist in the VN file at the start
of the compilation.

2. The code produced by the compiler is relocatable so that there is no
need to recompile all the overlays if the sizes of the overlay areas is
altered;ie. if the MAP statement is changed.

3. Once a variable name exists in the VN file the it will be -allocated
space in the variable list even if as a result of alterations to the
package it is no longer used by any program. This does not cause. any
problem other than that a certain amount of data space will be .wasted.
If it is reguired to remove such variables from the variable list then
it will be necessary to delete the VN file and recompile all - the
programs (starting with the root). ‘ ,

4. Although overlays are normally loaded from the root it 1is possible
for any overlay to load a overlay to another overlay area. However, the
overlay structure may only be defined in the root (ie. MAP statements
may only be obeyed in the root). o

5. DLOAD or LOAD may be used within a program in . an overlay . area to
load another program into the same area. s G

8. Errors.

The compiler performs exhaustlve checks whilst compiling a program and
.reports all errors found. Errors can be found during both 'Pass 1" and
“Pass 2. In addition, further checks are made whilst the compiled
program is run to detect errors that cannot be found at compile time.
From release 5 onwards then if any compile time errors occur ‘then the
Object file is -deleted by the compiler to ensure that the errors are
corrected before the compiled prograam is run. v

There are three types of errors that can occur :
-Pass 1 errors;
—Pass 2 efrors*
‘-Run -time errors

In addltlon warnlng messages can occur "during Pass 1

The following sections describe each type of error in more detail. = ©

8.1 PaSS'l Errors.

Pass 'l detects .most errors because- it checks the ' 'syntax of each
statement. ‘When an error 'is 'detected an error - message ‘'is ~output
.following’ ‘the’'line’ at which the error was detected. The ' message-
contalns an error ‘number and also indicates the position 'in the line at
which the error was detected Note that the error may be - before the'
point indicated. This is because an error cannot always be detected
immediately,eg. in an expression a mlss1ng bracket will normally not be
apparent until the end of the expre551on.

Appendlx c contalns a* full list of‘ the error "numbers and ,thefr
.meanings. = D . =) i

* B

8.2 Pass 2 Errors.

The main errors that can be found during Pass 2 are undefined 1line
snumbers;ie. a GOTO or GOSUB to a line number that does not exist.
,The'error message_is simply the line number containing the error
followed by a "U" to indicate an undefined line number,eg. :

23510 U

In addition at the end of pass 2 an error 41 can occur if it 1is found
that an array is used in an overlay for which no DIM statement has been
compiled (see section 7.2.2).

i

(A

8.3 Run time errors.

When a compiled program runs the Run-time 1library continually- checks
for errors and the following errors can occur '

- NEXT WITHOUT FOR
= RETURN WITHOUT GOSUB
- OUT OF DATA

- ILLEGAL QUANTITY
-~ OVERFLOW

- OUT OF MEMORY

- BAD SUBSCRIPT

- REDIM'D ARRAY

- DIVISION BY ZERO
- STRING TOO LONG
- FILE DATA

The above errors messages are the same. as those wused by the
interpreter. The interpreter detects additional errors not'in the above
list (eg. syntax error) but the compiler will find these ‘errors at
compile time.

The meaning of the above errors are exactly the same as for the
interpreter errors. Therefore, refer to the Commodore Basic manual 1if
the meaning is unclear.

The one difference between the run-time errors from complled programs
and from interpreted programs is that the compiled program glves the
address of the statement containing the error rather than :its 1line
number., A special program called ERROR LOCATE 1s prov1ded to enable the
line number to be found. The procedure is :

-make a note of the address of the error;
-load and run ERROR LOCATE;
-when requested key in the program name (ie. the name ‘of the

Object file) and the raddress of the error.

ERROR LOCATE will dlsplay the line number of the statement -containing
the error. :

Note that .the above procedure will only work if the LN file for < "that
program exists on drive 1. Also, if the error occurs within an overlay
then ERROR LOCATE should be run within that overlay,le."at Athe same
address as the overlay in which the error occurred. o

8. 4 Warnings.

Warnlng messages occur when the compller has detected an extension to
Basic (see section 6.1) to notify the user that an. extension- has been
found. The reason for doing this is that if a syntax error occurs at
the start of a- statement the compller will treat it as an extension to
Basic rather than an._error (there is no way that . the compiler could
separate the two cases). Therefore if warnings occur for lines on which
the programmer d1d not.use an exten51on an error must exist.

i

Warnlng messages ‘can be directed to either the screen or the printer
along with any. error messages and a count of the warning .messages is
output at the end of the compilation. gos " s

If a program frequently uses extensions to Basic then many . -warnings
will occur and 1n such a. case the’ .programmer may not require them.
Warning messages can be turned off by the use of the No Warning
directive(**NW) at.the start of' the program. In this cases no warning
Amessages w1ll be produced but a. count will .still be generated.

o

9. Use of Security Keys.

Section 4 describes how to compile a.program that will run on a machine
fitted with the 'Compiler' security key. 'Compller' keys - are’ ‘only
supplied. together with the DTL-BASIC compiler and can therefore not be
used by users who wish to run compiled programs on a - number of
machines. A second key is supplied with DTL-BASIC" and®this is known as
the 'Run-time' key and this may be used to run compiled programs on a
second machine. Additional 'Run-time keys can be: ‘supplled ~to enable
compiled programs to be run on any number of machines'. c

In order to produce a program that will run with a 'Run-time' key .all
that is necessary is to ensure that such a key is. fitted to the machlne
during compilation (as well as the 'Compiler' key,le one key 'on ;each
of the two cassette ports). When the compiler detects the two ' keys' it
will produce a program that will run with the 'Run-time' key fitted. By
making a number of copies of the compiled program_ the uSer can- then run
the program on any machine with a 'Run- time" key fltted b

As complled programs will only run on machines- fltted W1th keys the
user gains valuable protectlon for the compiled programs "but - if "the
standard 'Run-time' key is used then this protection is not absolute as
other users of DTL-BASIC can also obtain the standard keys. However,
users who require complete protection for their product can be supplied
with unique keys which contain their own serial number. Once a serial
number has been allocated to a particular user then only that user will
be able to obtain keys containing that number.

When the compiler detects such a 'Software . House' key during
compilation it will first ask the user to input the serial number and
will not compile the program unless the number is ,input correctly. 1In
this way only the registered user of a key can compile programs to use
that key (as long as the the user does not reveal the serial number to
other users). ’ .

By using DTL-BASIC together with 'Software House' keys a supplier can
gain comprehensive protection for a product. The protectlon system will
work equally well with cassette based and Computhlnk disk based
products as well as CBM disk based products. In addition, the. end-user

€ is able to take backup copies for security.

%Qﬁ Compatabilityr

As has already been: explalned DTL BASIC has been des1gned to achieve a
hlgh degree of compatablllty wrth the Commodore "BASIC Interpreter.
Obv1ously no - two products can be totally ~compatible- otherw1se they
"~ would- be effectlvely the same.,For example compiled programs run faster
than un- complled ones and whilst this is normally » advantage ‘there
can be .situations where this will require thé- source. to be -altered to
slow "the complled program down,eg. when a FOR loop .is used to create a
specific delay. - P EE P e e E 52 f o om

This $Sections ~“lists all the known - incompatabilities : with ‘- the

Interpreter 1n the current release (some: may be removed ~in future
releases) g o o I ‘ L.

T *—complled programs cannot be re-started with a CONT although the
same effect can be achieved by typlng SYS1069 (this restriction
does not apply to version 4). S - '

-calls to a user function"-cannot be “made’ from the ~following
statements or from statements Wthh are extens1ons to Basic 2,

PRINT PRINT#&INPUT INPUT#SGET GET%&OPEN CLOSE

‘it is very rarely that FNs- are used in “such -statements but' = if
- they occur the compiler‘will report an error and- a mlnor change to
the Source file will be required,eg.the statement :-

PRINT FTHE VALUE IS ";FNA(BI]
‘ could be changed to

" A1=FNA(B):PRINT'"THE*VALUE’IS‘":Al

‘—a complled program can ‘only be started ‘at- the first 1line by a
ngrect command ie. by RUN and not by RUN <line number>- (eg. not by
~RUN 200). Note that thlS does not apply to RUN statements within
the ptrogram;- - -- S E o " '

-because the program is compiled the source text is not in memory
when the program runs so that any statements that access the
source text in any way will not work.

-the format of the variable list is fully compatible with the
interpreter so that when the program is stopped variables can be
displayed/changed via Direct commands. The only difference is that
the order of variables in the list may be different from when the
program runs under the interpreter. With the interpreter the order
will be the order that the variables are referenced at run-time;
for compiled programs the order will be the order in which the

compiler meets the variables at compile-time. This difference

could only conceivable affect assembler routines and even then it
is very unlikely.

S

O

N

-the format of the Array 1list 1is also the same as “for~ the
interpreter although the order of the arrays in the list may ' also
differ and there is one additional -array inthe ‘list “cdlled” -tHe
Array Table. The Array Table is the first-array in the “list and
has a non-standard header. The Array Table is~ used to hold
pointers to the start “of each normal ‘array and is necessary
because the addresses of ‘arrays cannot ‘always ‘be ‘calculated r~at
compile time. When a - program makes an ‘array- access -then the
Run-time llbrary accesses the Array Table. to “find -the array
address. “ - T e e

~-when a compiled program is LOADed from another compiled - “program
then the two programs cannot share variables,ie. the ' new program -
has its own set of variables after being LOADed (this restriction
does not apply to release 5) B TSP "

S0 dhro sl Gl T -

3 &
at
1 i ‘et B
24 o P
. ¢ : -

ff
|
|

Appendlx A hat is a compller ?

and'an 1nterpreter.

The flrst p01nt to reallse is .that a compller and 1nterpreter are
trylng to. achieve the same end,ie. they are both trylng to prov1de a
way of runnlng a program.'They both have to perform.a. .similar . -set of
tasks 1t is just that these .tasks are performed at dlfferent times.
Con51der what has to be done to 'run' a program A program con51sts of
ag set of statements and each statement is simply - . sequence of text
characters. The’ program is;intended by the programmer to define an
algorlthm 1e.41t defines- how a problem 1is_. to be solved or -how a
partlcular task is to. be, performed The algorithm-is. deflned in- terms
that .are,. mean1ngful to - the programmer -but not . very meaningful . to the
computer ie. in terms of wvariables, »operators, functions and 1line
numbers etc

The maln‘taskﬁftha.z statement before a

each

:ﬁg.jfor each varlabledname detected then;thelllst of variables .must
be searched to see it the variable has been allocated an address,
if not an address must be allocated;

4, for each reference to a line number (in a GOTO or a GOSUB) the
address of the line must be determined;

5. for each exPression the operator priority rules have to be
applied and any brackets taken in to account in order to determine
the order of evaluating the expression;

6.. any non executable parts of the program such as spaces or
comments (REM statements in Basic) must be skipped and ignored;

7. finally the statement has to be obeyed.

Both c¢ompilers and interpreters have to perform all_ the above tasks
(and others); the difference is when the tasks are performed. This is
1mportant because most statements in a program are executed more than
once and often many times. An intepreter performs the above tasks every
time that a statement is executed and this means that the same work can
be repeated many times. Such repetition is obviously wasteful and can
be very time consuming,eg. a large program can have several hundred
variables so that each time a variable is referenced a long search may
be required. A compiler avoids such wasteful repetition by processing a
program and convertlng it to a different form. In this way each of
tasks 1 to 6 above are performed once only for each statement and only
task 7 must be petformed many times. Tasks 1 to 6 are performed when
the program is compiled and only task 7 need be performed every time
the program is run.

Toa
R THIRP |

With an interpreter a program_exists“inhonly one‘formlie. the text thatp
¥ the programmer has writteni*With an éompileéer :-the’ program has-two forms]

3

-the textrform;

-the converted form, R

To distinguish between the two the text form is normally called the

source code and the converted form the object ¢ (or - blnary) code. The -
object code for a stateméent :normally contains ~addresses “where the;
source code has variable names and/or llne‘ numbers.' Slmllarly’

expressions are normally re-ordered to cater‘for’ operator prlorrty andi
brackets etc. Also all redundant information such as 1spaces REMS- - and -
line numbers etc. is'omitted and complex- statements are normally broken'
down to a number of simple steps. - =¥ - ol T LT : :
It should be clear from this that by pre-proce551ng {ie. complllng) a
program a compiler can make the prégram@run.michsfastef “but - obv1ously‘
the compilation process takes time. The advantagé of “an: 1nterpreter “i's’
(\ that- when a-program is being frequently changed (eg. when 1t is be1ng
debugged or modified) the sdurcé can :simply be edited:and<:the program
re-run. With a compiler the program must first be re- compiled before a

change can be tested. 'The two ' techniues. are- thus~~comp11mentary;
1nterpreters are best during the program development phase but once a
program is working a compller 1s superlor because i“glves the best

program performance.

% 5 X

w
W

Appendix'B ~Summary. of Compiler. Directiwves -

[

o - . o S ¢

s ', a4 Bab, &

There are a number of Compller Directives (ie. instructions to the

compiler) that may be incorporated within a program.. The directives
have the form of REM statements so that programs .containing ‘directives
may still be run under the Interpreter. The standard format:-of a
dlrectlve 1s : HE NNt F R T :

REM, * % <&ireCtive id> <directive fext§bb

ThlS form has been chosen to mlnlmlse the chance that an’ existing,,REM;
- be''si : Acompller.:\Most dlrectlves - should-

ol o -program.. (ie... -before any . non, REM
statements have been found) ‘but ‘two -directives ' (ES & DS) .can occur
within the body of a- program.

-Reference ..

~'e

g
5.6
5 ‘ o Specr'_ : R 5_4 3
NL = No- lerary el QL3
~ NW - No Warnings 8.4
‘?~R0”"- ‘Root OvEe: lay Lo . PRI ISy Bt BE &k
VN. = Variable. Name. fllezfor overlaygi*_47.2* * %
NE =" No standard extensions 4.6 ¥
DS - Disable Stop key 4.6 * %
ES =~ Enable Stop key 4.6 e

Hana'}at-wpresent»

‘
‘.
Q;(l

9;

)

m

REM

REM

shby L Taem i w0 A ey

** CS (A,B,X1,G5,GG,Z9=>22%") -
" means.__convert A,B,XI, G5, GG, z9f;t§' A%,B%,X1%,G5%,GG%, Z2%
resPectlvely. _ R - nEEsats L Rl T e T 1T e e

** CE (W4,W,FF= >Fl% MM)

means convert all reals to 1ntegers ofwthe same namepﬁeXceétﬁ'
W4,W,MM which are not to be. converted and.. FF- Wthh is to Dbe
converted and is to be called Flsg.

REM ** SI
instructs the compller that when both\operands are 1nteger and
the operator is either divide or
real operation instead -of an 1nteger opera
REM ** NL
instructs the compiler to not include the Run-time library in
the Object.file. This¥will -mean :that: the Object. file will=only Tuh™
when it has been LOADed from within another. compiled:: program -but::-
has the advantage that the Object file will need less disk space
and will LOAD faster. Programs compiled with **NL should not use a
51mple RUN; RUN statements should be replaced by RUN <n> where <n>
is the number of thexfirst line of the program.
For programs using this directive any REM: *%..ST ~direetives will be
ignored and the integer mode used will ber determlnef #by. . .whether
the program that loaded it (ie. the one with:; .the:Run~time lib ary)
had a REM ** SI directive. :
This directive is not needed for version 4 beé@uset thethun'time
library is never incorporated .in 'the program.. e e
REM ** NW .
spec1f1es that no warnlng messages are " to be output during
compilation. at omwm, B P el RN e T
REM ** RO

.indicates to :the compller -that it =is;compilinga.reot. overlay:.
program and that a VN file is to be generated if one does not
exist already.

REM ** VN "<name>"

indicates to the compiler that an overlay 1is being compiled
and that the list of variables names will 'be found in file
"vn-<name>" where <name> it the name of the root overlay.

REM ** NE
exten31ons to Basic). | S s .
REM ** DS ‘ , ’
dlsabl‘s “thé STO:P key (w1thout ‘ affectlng the
clock) Thi's dlfectlve (and RE anywhere ““in a
program - '
REM ** ES
; o
O
S —— i T—]

)

3

(

Appendix C Error:Numbers:: <.l

ERROR - - CAUSE~OF.

NUMBER . ERROR
1- syntax error F
2 o wrong type of. operand ok
3 ¥+ ho 'TO' whére one:. expected
4 oo 1llegal*arra -subscript -
5 :'no ')' where.one expected'
6 - no '(',where one -expected -
7 . . no ', where-oneﬂexpected”
8 - ‘no ';' where one expected- ::
9. - . . no '"THEN' or 'GOTO' whére. or
10 -~ -: no-'GOTO'" or :“GOSUB' where o
11 . - no.'FN' where one expected
12 a4 constant too b1g (either =3 2
13 expre881on too ‘complex ,'

i - (shouldn't occur 1f program‘rs OK"on sy
14 - . - syntax error., 1n expressron*,;a Spamlos -
15 too many -!)%s - BT Pt TP TR S I L5 plsgdmad
16 illegal operator in string: expressronn copn o3t omaA T
17 type mismatch
18 . e 1llegal statement type:: (CONT,'LIST or SELECT) R S
19 S - program.too big 4 7 - 2 PRy LT
- _. . (shouldn't .occur if program rs OK on Interpreter) o
20 3 ‘a function name must. be ‘real oo to Lot idmoe o Iah
22 . . FOR varlable,cannot be an array element g
23 .7 ., ~ Wrong number - of subscrlpts A o
24 ... -integer, too big.. L DL s ERVRP o
25 . e negative number - 1llegal ShImg F=y s
26) cannot ;set ST,TI;DS or DS$--A) Iene s oD
27 .)) functlon varlable must be real L DL EmLTL tib
28 no functlon .where one expected AP TRT J FS Tl PUR Tl s B 1
29 no operator or separator where one expected
30 - ‘- type mismatch in relational expre331on =R A AR RS
31~ .. . no line number -where one ‘expected . BT Le ST AL
32 - - no operand: where one expected - | R USRS GP SRR R § 2ol |
33 ., - 1llegal -CS or; CE statement eom G % USSTIR S ST I T L il
34 - bracket missing. from CS or CE statementxj ST ¢ n B Podiel
35 : : too; many, conversion: varlables (> 128) 7o % d o LigpioD
" 36 . . error..in CS or CE; no ',' Or- '—>'-after cname:t T.oiog 03
37 error in CS or CE;no '%' where one expected
38, , ; converted,.name: clash in CS o6r CE -~ wovpg arn 2oy oot
39, - ‘no FNs allowed in -this statement ~type - (.o saL A

(an edit is required - see section 7) YT R NESS

40 no '=' where one expected

41 ‘default’ arrays found in overlay

e I eI

Appendlx D Use of ROM chlps w1th complled programs e

There are an increasing number of ROM chips which can’ be usedr in CBM
machines and many of these provide extensions to Basic.:-" DTL-BASIC ' 'Has
special features that are des1gned to. enable -:sygh:z extensions .to be
compiled. There are three main types of extensrons that are_used and
these can all be handled by DTL- BASIC -R U m;;; e o B

- wedges; ie. extensions to Ba51c that are*detected by _
called from the CHRGET routine in page zerp and to keep the ROM
routine 51mple the extensions:- normallys.-stact ‘withe a non
alpha-numeric character. When' the compilér . ~deteéts .~ such a
statement it embeds the whole’statement :in- “the complled program
and.at.run time.passes 1t'through to- the-rnterpreterf whichg :picks
up : the wedge (see sectlo.: ' often-,access- "Basic

1 and

;¢ Note sthat .the sonky:s sltuatronpwhsrecwedges w;ll not work wwith the
compller is those that start with:an- -alphabetigcxzch,
include a ":" within the statement (the compller‘ w111 treat the
":" as the end of the statement). - T - 53 {3

i RS £ B 12 ~Leq 1= ery Ed
that the statement starts with one “of the unused token .characters
(this effectlvely produces extra keywords) ~ When the compiler
> : = oken;it treats the

¥ compllcatlon in

the'»compller the
Wltb sthe - extra
: J“ :the-:vlines

4] | LIST to ob apn a lbsgrngbln the normal way ‘instead
‘of 1nstruct1ng the compller to- produce a: llstlng.< " J
- extended SYS calls- some ROM ChlpS user S$S Céllﬁﬂ followed uby
parameters. This techrnique works on- thef'lnterpreter= because the
routine moves the text péinter past: the: parametegs*so -that onpexit
- from the routine the interpreéter 'sees' the end of ' the statement
rather than the: parameters “Such glsc'callwu,”rkh(xwork withi¢ the
compller because -on; entry to the routlne the text p01nter 1s set

-

© - statemenrt

,a routine

haracter or whlch:

szedge except-

-using theé’

.t

.otherJﬂth&n

O

Co AP .:, bt B e g A LTVE ey g 4

T b .; LT ¥ e TV 4 [P R R Vi SURRE N C . Sailel B

¢ The follow1ng ROM chips have been used successfully with DTL-BASIC : i

-2 Super Krami
¢Z- Computhink disk’ systeéf
& JCLeBusineg§§ ROM~ ' '#7w
- Command-0

- Disk-0-Pro

% Taylor Wil&en:MPS“&y&tém & &w. -
"(not#a ROM biut dées usé. " °
exténsions- to Basxe g&@ e
i note below) ¥ dr TS INR

e 5 - 2 i ',-\17) - ;r,-, e

SRS

ThlS .is.'hot a complete llSt of™ ROM'\CﬁlpS“
compiler it is simply a’ F¥st of - -some" of the
SO far*~As yet no product has been i :

run from: Computwlnk drlves
Commodore drlves‘ i

P

=1

2, The’ only Known . problem that may occuruwh
ROM with -compiled programs ‘reldtéesiite the mulﬁi
the PRINTZAT “statement!. Thig: feature ‘a1l Ebws ;
to ‘be cascaded iby the uséicf :":%& tos separate
The problem ce€curs-becatise thé compller w1ll tre&*
of the statement <(the:effect:wilk qES

time); the ‘problem:can‘ be -avwsided by

full , €g. g8 e B & EE P

410 PRINT

T 3R

) TemsI 35
410 PRINP
B b ; . % 5 ,
.3. All Commaner'and Disk—O-Pro~programﬂstateme work “iwhién “icompi led
with the exceptlon of MERGE and:MERGE (which expect Besrd source to
merge and whiéh"“thferefore iget: conﬁused‘by ‘a complled pr: am). “AYS
Dezand DSS fedtures of -Disk-0<Pro will € work. H&- 'L

4. Before running the compiler then if either Command-0 or Disk-0-=Pro
is enabled then perform an OUT statement from the keyboard to disable
the enhanced screen editor. This is because the enhariced screen editor
does not allow LOAD or DLOAD statements to be obeyed.

5. The MPS system uses some assembler routines loaded to RAM to

implement the BOPEN and BCLOSE functions. These extensions cause a

problem because they are not. implemented as true extra keywords and

- consist of the letter B followed by a keyword. As explained previously

the compiler does not recognise extensions starting with an alphabetic

character. This problem can be overcome by altering the routines in

() file MPS1 to look for a % instead . of a B. This is achieved by altering

location $058F from $42 to: $25 and ‘by using $OPEN and &%CLOSE 1in
compiled programs:

®
1

i=

N

. b

h e ¥
e

R

.

£

¥ d

i -
vy~ +

s

T b o
cyoe

3 \
PR

-

g Ty
1
-y

- i

B I
-

Wi

.

5

S L2l

-

5

2L

O

.
" i
.
s
"
R
“
W
.
ey 00
v
Tty
e
noT,
Ny
v
o

i
o,

e

U
H

AT I e
CEDSES

C ok e ; Y E :
s - e -
<l et B
s
. oE -4 ' i
E - ,.
b 4 - R A
N oy , it
T 2 .
.
= . o
4 e s . .
.-] - .
L I 3
El " L%
‘ LR v
o ey .
” " ot %
s L Py ny
. o (e . 5
25 o,
£ LT
,. x A
-
!
s F TN .
3 : < .
.o i *
p t - % R
e N . ‘.\r u- [
& a P .
4 < | R
H 3
b
. ~ a4 %
f =2 ¥
P
s
Sren
! JE .
T T -

L

TR
- A
L @i

T
2
-

oo
s
A
[ON

b 2
e

w

	dtl_pet01.jpg
	dtl_pet02.jpg
	dtl_pet03.jpg
	dtl_pet04.jpg
	dtl_pet05.jpg
	dtl_pet06.jpg
	dtl_pet07.jpg
	dtl_pet08.jpg
	dtl_pet09.jpg
	dtl_pet10.jpg
	dtl_pet11.jpg
	dtl_pet12.jpg
	dtl_pet13.jpg
	dtl_pet14.jpg
	dtl_pet15.jpg
	dtl_pet16.jpg
	dtl_pet17.jpg
	dtl_pet18.jpg
	dtl_pet19.jpg
	dtl_pet20.jpg
	dtl_pet21.jpg
	dtl_pet_xx21.jpg
	dtl_pet_xx22.jpg
	dtl_pet_xx23.jpg
	dtl_pet_xx24.jpg
	dtl_pet_xx25.jpg
	dtl_pet_xx26.jpg
	dtl_pet_xx27.jpg
	dtl_pet_xx28.jpg
	dtl_pet_xx29.jpg
	dtl_pet_xx30.jpg
	dtl_pet_xx31.jpg
	dtl_pet_xx32.jpg
	dtl_pet_xx33.jpg
	dtl_pet_xx34.jpg
	dtl_pet_xx35.jpg
	dtl_pet_xx36.jpg
	dtl_pet_xx37.jpg
	dtl_pet_xx38.jpg
	dtl_pet_xx39.jpg
	dtl_pet_xx40.jpg
	dtl_pet23.jpg
	dtl_pet24.jpg
	dtl_pet25.jpg
	dtl_pet26.jpg
	dtl_pet27.jpg
	dtl_pet28.jpg
	dtl_pet29.jpg
	dtl_pet30.jpg
	dtl_pet31.jpg
	dtl_pet32.jpg
	dtl_pet33.jpg
	dtl_pet34.jpg
	dtl_pet35.jpg
	dtl_pet36.jpg

