Commodore 264 Series

Preliminary
Users Manual

(= commodore
COMPUTERS

USER’S GUIDE STATEMENT

“This equipment generates and uses radio frequency energy. If it is not
properly installed and used in strict accordance with the manufacturer’'s
instructions, this equipment may interfere with radio and television
reception. This machine has been tested and found to comply with the limits
for a Class B computing device in accordance with the specifications in
Subpart J of Part 15 of FCC Rules, which are designed to provide reasonable
protection against such interference in a residential installation. If you
suspect interference, you can test this equipment by turning it off and on. If
you determine that there is interference with radio or television reception, try
one or more of the following measures to correct it:

* reorient the receiving antenna
e move the computer away from the receiver
¢ change the relative positions of the computer equipment and the receiver

¢ plug the computer into a different outlet so that the computer and the
receiver are on different branch circuits.

If necessary, consult your Commodore dealer or an experienced radio/
television technician for additional suggestions. You may also wish to
consult the following booklet, which was prepared by the Federal
Communications Commission:

“How to Identify and Resolve Radio-TV Interference Problems”. This booklet
is available from the U.S. Government Printing Office, Washington, D.C.
20402, Stock No. 004-000-00345-4.

INTRODUCTION

YOU’LL ADORE YOUR COMMODORE 264!

Welcome to the Commodore family! Whether you’re a beginner or an expert,
you'll be surprised how easy it is to use your Commodore 264 computer. The
Commodore 264 is easy to program . . . but you don’t have to be a
programmer to use it. You don’t even have to know how to type!
Commodore’s full selection of COMMODORE 264 software makes it easy to
use your computer for business, home and educational applications. (And
don’t forget the games!)

You Bought The Best Computer

These special built-in features make your COMMODORE 264 the best home
computer you can buy:

64K RAM (60K available for BASIC programming)
Full Typewriter Style Keyboard

Optional Built-in Software

Screen Window Capability

HELP Key

8 Programmed, Reprogrammable Function Keys
Four Separate Cursor Keys

Uses Most COMMODORE 64 and VIC-20 Peripherals
128 Colors (16 primary colors, 8 luminance levels)
Over 75 BASIC Commands

High Resolution Graphics Plotting

Split-Screen Text With High-Res Graphics

Graphic Character Set On Keyboard

Keyboard Color Controls

320 x 200 Pixel Screen Resolution

Reverse and Flashing Characters

2 Tone Generators

Built-In Machine Language Monitor (13 commands)

What You Can Do With Your Commodore 264

The key to any computer is SOFTWARE, and Commodore has a full “menu”
of software available from your Commodore dealer. Specific applications
include wordprocessing, financial calculations, learning activities, mail lists,
project planning, recordkeeping, home budget, investment analysis and
much more. Some software products combine several different functions,
such as “Triology,” which provides wordprocessing, an electronic
spreadsheet, database AND graphics!

Many models of the Commodore 264 have software built into the machine.
You can also buy Commodore software on plug-in cartridges, floppy
diskettes and cassette tapes. And of course, you can learn to program your
computer in BASIC, which comes built into your computer, or in other
popular computer languages such as LOGO.

Built-in Software

You may have purchased your Commodore 264 with one of several built-in
software packages that are ready to use as soon as you turn on your
computer. If your computer has built-in software, a separate manual
describing how to use the software is included. Built-in software on the
Commodore 264 is a Commodore first!

Commodore Software on Cartridge

For a long time, video games were the only software programs available on
cartridge. Now Commodore brings you large application programs such as
wordprocessing and business programs on cartridge...at prices you can
afford. Cartridges are convenient because all you have to do is plug them in
and start computing; you don’t need any additional equipment. There are
other advantages as well...for example, an electronic spreadsheet on
cartridge gives you more working space than an electronic spreadsheet on
disk.

Software on Disk and Tape

Commodore software also comes on floppy diskettes and on cassette tape.
The Commodore Disk Drive lets you run Commodore disk-based software
and the Commodore Model 1531 Datassette lets you run tape-based
software.

Programming in BASIC — Over 50 New Commands

It's easy to program your COMMODORE 264. Start by working through the
exercises included in this manual, and if you want to get more involved in
programming, Commodore offers several self-teaching courses such as
INTRODUCTION TO BASIC and our BOOKWARE™ series of books and
tutorials.

The BASIC on your Commodore 264 is the most powerful BASIC ever built
into any Commodore home computer...it includes MORE THAN FIFTY NEW
BASIC COMMANDS including full GRAPHICS PLOTTING and PROGRAM
EDITING.

Programming in LOGO — Turtle Graphics and More

Many new computerists prefer to learn programming with LOGO, an easy
computer language created for beginners, which features the use of a
“turtle” to draw pictures and create graphs and charts. LOGO is rising
rapidly in popularity, especially in schools, and Commodore has a strong
commitment to this “friendly” programming language.

The MAGIC DESK

If you're a new computerist and you want to use your computer for
wordprocessing, calculations and other functions, but you really don’t want
to learn any special commands or instructions...try MAGIC DESK. This
unique Commodore software system uses PICTURES of familiar objects
instead of written commands, and uses the computer keyboard like a
typewriter. The software is automatically linked to your disk drive and printer
so, for example, all you have to do is “point” at the picture of the printer to

print out a paper copy of something you’ve typed. Ask your dealer for a
demonstration.

Creating A Complete Computer System

As you develop your complete computer SYSTEM, you’ll find that
Commodore peripherals are priced so you can afford them, and designed
with superior features. Here are the major peripherals included in most
typical Commodore home computer systems:

Computer: Commodore 264
Display: Commodore Color Monitor (or your television set)
Storage: Commodore Datassette (tape recorder) or Commodore Disk
Drive
Printer: Commodore Printer (several models) or 1520 Printer/Plotter
Modem: Commodore VICMODEM or Commodore AUTOMODEM
Controller: Commodore Joysticks

Where To Go From Here?

By now you’ve done enough reading and you want to get started. Here’s
what we recommend you do first: Send in your warranty card. Subscribe to
the Commodore magazine so you get the latest information on your
computer, and join the Commodore National User Club. Read this manual
and try the exercises. Try some software. Keep checking in with the
Commodore dealers in your area for new developments in software,
bookware™ and peripherals. Enjoy!

CHAPTER 1
CHAPTER 2
CHAPTER 3
CHAPTER 4
CHAPTER 5
CHAPTER 6
CHAPTER 7
CHAPTER 8

APPENDICES

A

mooOw

T rXe _ITO

TABLE OF CONTENTS

Unpacking and Setting Up the Commodore264 1
Using the KeyboardandtheScreen 8
Getting to Know Your Commodore264 16
UsingSoftware i, 29
BeginningBASIC 37
Using GraphicsandColor............................ 47
MakingSoundandMusic 67
BASICTriCKS . ..ot e 75
... 93
ErrorMessagest e 94
BASIC 3.5 Commands, Statements, and Functions 99
BASIC3.5Abbreviations, 130
TEDMON ... e e 133
Converting BASIC Programs to Commodore
BASIC 3.5, . . e e 139
MemoryRegisterMap........... 140
MusicalNoteTable 142
ASCllandCHR$Codescoiiiiiiiiinnn.n. 143
ScreenDisplayCodesot 146
Screenand ColorMemoryMaps. 148
Deriving Mathematical Functions 150
ProgramsToTryt iiii e 151
BookList i e 154
.. 156

CHAPTER 1

UNPACKING AND
SETTING UP THE
COMMODORE 264

Unpacking your Commodore 264.

Getting to know the switches and
sockets.

Setting up your Commodore 264.
Troubleshooting chart.

UNPACKING YOUR COMMODORE 264

Now that you’ve opened the box containing your new C-264 box and found
this manual, the first thing that you should do is check to make sure that
you have all the items on this list. You should have:

1. Your Commodore 264

2. The power supply

This is a black box with a line cord POWER
coming out of one end, and a round plug CORD
coming out the other. The round plug SOCKET
goes into the back of the C-264. rowen
The other end has a standard three- SuPPLY
prong line plug that goes into a regular
wall socket.

3. The TV switchbox |

This is the silver and black box that
connects to your antenna jack on the
back of your TV. You don’t need the
switchbox if you plan to connect your
C-264 to a monitor.

4. The RF cable
This is a thin black cable, with a single v
prong jack at each end, used to connect SWITCH BOX
the TV switchbox to the RF output jack -
on the side of the C-264. You don’t need N
this cable if you are planning to connect
your C-264 to a monitor.

5. The user’s guide
(Obviously!)

6. Other assorted literature, such as the
warranty card, etc.

If you don’t find all these items in the box, check with your dealer
immediately for replacements.

Before you connect anything, you should look over these drawings of your
computer. These drawings identify all the outlets so you can set up your
computer system quickly and easily.

GETTING TO KNOW THE SWITCHES AND SOCKETS

THE RIGHT SIDE OF YOUR C-264

THE ON/OFF SWITCH

Your C-264 should be
turned off when you
install or remove
cartridges or any
peripheral device such
as a printer or disk
drive. The OFF
position is marked so
you can be sure when
your machine is off.

RESET oN/OFF

THE RESET BUTTON

There are two ways to use the RESET button:

1. You can use the RESET button to clear your screen and reset your computer as if you'd just
turned it on. Just press the reset button once. Be careful: when you press the reset button,
you will lose any BASIC program currently in memory.*

2. If you want to reset your Commodore 264 and KEEP your BASIC program, hold down the
RUN/STOP key and then press the RESET button. When you do this, your C-264 goes to the
built in machine language monitor. Type an X and press the RETURN key to get back to
BASIC. Your program is still completely intact in the C-264 memory. Just type LIST to display
the program on your screen.

“When you press RESET, C-264 automatically issues a NEW command. This can be reversed. See the Commodore 264
Programmer's Reference Guide for information on UNNEWIing your program after you've pressed the reset button by accident.

THE LEFT SIDE OF YOUR C-264

The socket and the
switch on the left side
of the C-264 (if you're
facing it) both have to
do with TV con-
nections. Neither is
used if you're
connecting your C-264
to a monitor.

o i —_———
RF
JACK

THE RF JACK

This is where you plug one end of the RF cable (the thin black cable). You can plug either end
into this socket and the other end into the TV switch box.

HI/LOW

THE HIGH/LOW SWITCH

This switch controls which channel will display your C-264 video output. Set the H/L switch to
1. for output on channel 3. Set the H/L switch to H for video on channel 4.

You can use either channel 3 or 4 on your TV to display the video picture from your computer. If
you have a channel 3 TV station in your area, select channel 4, and vice versa. You'll probably
want to experiment to see which setting gives you the best picture.

THE BACK OF YOUR COMPUTER

RS-232 EXPANSION JOY JOY
BUS CASSETTE PORT 1

The sockets on the back of your computer connect a variety of accessories to your Commodore
264. Each connector is different. Be sure you plug each accessory into the right socket.

THE POWER SOCKET

The round end of the power cable fits in here. The power cable is the one connected to the power
supply box. Plug the other end into a standard wall socket for three-prong plugs.

THE SERIAL BUS

You can plug a disk drive or a printer into this socket. If you want to plug in both, plug the disk
drive in here, and then plug the printer into the back of the disk drive.

THE CASSETTE PORT
The Commodore cassette tape recorder plugs in here.

THE RS-232 PORT

Accessories such as a modem and an RS-232 adapter plug in here.

THE MEMORY EXPANSION PORT

C-264 software cartridges and the C-264 fast disk drive plug in here. When you install or remove
cartridges, be sure to turn off your C-264.

JOY 0 AND JOY 1: THE GAME PORTS

You can plug joy sticks into these sockets. The Commodore 264 uses specially designed joy
sticks available from your Commodore dealer.

THE VIDEO SOCKET

This is where you plug in the cable that connects a monitor to your C-264. Although this socket is
an 8-pin connector, you can use a 5-pin cable in this socket as well. The Commodore 1700 Series
Color Monitor comes with an 8-pin cable for use with the C-264.

SETTING UP YOUR C-264

e You need to set up your C-264 somewhere with access to at least two
wall plugs: one for your C-264 and one for your TV or monitor.

e |f you’re installing a disk drive and a printer, you’ll need additional wall
plugs.

¢ Your C-264 needs a place to sit that is a comfortable distance from your
TV.

e Make sure that your computer is OFF before you start the setup. Check
the ON/OFF switch on the side of the C-264 to be sure.

CONNECTING YOUR C-264 TO YOUR TV

If you are connecting the C-264 to a television set, you will need a small
screwdriver to attach the TV switchbox. The way you connect the switchbox
depends on what type of antenna connection your TV set has.

NOTE: If your antenna is connected to your TV by a single round-ended
cable (the 75-ohm co-ax type), you will need either the 300 ohm to 75 ohm
adapter, which came with your TV, or you must get a replacement 75 ohm to
75 ohm switchbox. The adapter is a small plastic part with a co-ax connector
on one side and two screws on the other. If you do not have one, it is
available at most electronics stores. Once you attach the adapter to the co-
ax connector on your set, you can follow the rest of these instructions.

STEP 1. Disconnect the antenna from your TV: use a screwdriver to loosen
the screws on the TV. Remove the two antenna leads.

STEP 2. Connect the TV switch box to the TV where the antenna leads
were: use a screwdriver to attach the leads on the box to the
antenna input screws on your TV.

STEP 3. Connect the antenna to the switch box: use a screwdriver to
attach the leads from the antenna to the screws on the switch
box.

If you have the round coax type antenna connection on your TV, and you
have a replacement 75-ohm TV switch box:

STEP 1. Disconnect the antenna from your TV: unscrew the antenna wire.
Just unthread it by hand.

STEP 2. Connect the switch box to the TV: hand turn it onto the antenna
input post on your TV.

STEP 3. Connect the antenna to the switch box: hand turning the antenna
cable into the switch box.

Once the switch box is in place, get the RF cable (the thin, jack-ended cable)
that came with your C-264. Plug one end into the socket in the top of the
switch box. Connect the other into the socket marked RF on the left side of
your computer.

Once you’ve attached the switch box to the TV, you never have to do it
again. When you want to use the computer, just move the switch to
COMPUTER. When you want to watch TV, just move the switch to the TV
position. The switch box will not interfere with vour TV reception.

SELECTING A CHANNEL ON YOUR TV

As we explained earlier, your TV should be set on either channel 3 or 4 when
you are using your computer. Don’t choose a channel that broadcasts in
your area. If you use channel 3, set the H/L switch on the side of the
computer to L. If you use channel 4, set this switch to H.

CONNECTING YOUR COMMODORE 264 TO A MONITOR

If you’re connecting your computer to a monitor instead of a TV, follow the
instructions in the manual that comes with the monitor. Hooking up a
monitor like the Commodore 1703 Color Monitor is simple. It requires only
one cable that goes directly from your monitor to the VIDEO socket on the
back of your computer.

FINAL STEPS

1. Attach the power supply cable with the power box to your C-264. Plug
the round end of the cable into the POWER socket on the back of the
computer; plug the power supply into the wall socket.

2. If you are using a TV, make sure that the setting on the modulator (H/L),
and the channel on your TV (3 or 4) are in agreement. Make sure that the
switchbox is set to the COMPUTER setting.

If you are using a 1702 or 1703 monitor, use the rear jacks, and check
that the back/front switch is set to BACK.

3. Turn on your computer. (The switch is on the right side as you face the
C-264.)

4. If all went well, this message will appear on your screen:
COMMODORE BASIC 3.5 60671 BYTES FREE
READY.

The flashing cursor under the READY message tells you that the C-264 is
waiting for you to start typing. The background color will be white, while the
letters will be printed in black.

5. Check the troubleshooting chart if you have problems. You may need to
adjust your TV set to get a sharper picture.

TROUBLESHOOTING CHART

Symptom

Cause

Remedy

Indicator Light

Computer not “On”

Make sure power switch

Random pattern
on TV with
cartridge in place

Incorrect hookup
Video cable not plugged
in

Computer set for wrong
channel

Cartridge not properly
inserted

not ‘On” is in “On” position
Power cable not plugged Check power socket for
in loose or disconnected
power cable.
Power supply not Check connection with
plugged in wall outlet
Bad fuse in computer Take system to
authorized dealer for
replacement of fuse
No picture TV on wrong channel Check other channel for

picture (3 or 4)

Computer hooks up to
VHF antenna terminals

Check TV output cable
connection

Set computer for same
channel as TV (3 or 4)

Reinsert cartridge after
turning off power

Picture without
color

Poorly tuned TV

Retune TV

Picture OK,
but no sound

TV volume too low

Aux. output not properly
connected

Adjust volume of TV

Connect sound jack to
aux. input on amplifier
and select aux. input

NOTE: Some TV sets cannot display the entire C-264 screen. Instead, their picture crops off the
leftmost and rightmost column of the C-264 screen display. We recommend you use a different
1V set or a monitor such as the Commodore 1702 or 1703 color monitor.

If this is not possible you can remedy this problem by pressing the ESCape and N keys. This
1educes the computer screen display size so the entire picture can appear. You must repeat this
cach time you turn on your computer.

CHAPTER 2

USING THE KEYBOARD
AND THE SCREEN

A tour of the keyboard.

The special keys.

The graphics keys.

The programmable function keys.
The HELP key.

TRY TYPING THIS ON YOUR KEYBOARD:

1 PRINT “your name” press the key
2 PRINT “HAS A NEW 264" press the key
RUN press the key

A TOUR OF THE KEYBOARD

Many of the keys on the C-264 keyboard are like the keys on a typewriter, but
every key can do more than a typewriter can. In this section, we’ll show you
how to use the special keys, like the @ key and the cursor arrow keys.

And we’ll show you the extra powers of every key, including how to print the
graphic symbols on the fronts of many of the keys.

While we guide you on the tour of the C-264 keyboard, you should find the
keys and practice using them.

THE SPECIAL KEYS

You have to press the RETURN key at the end of each line of instructions
you enter on your Commodore 264 keyboard. You might think of this key as
an ENTER key because RETURN actually enters information and instructions
into the computer.

This key works like the shift key on a regular typewriter. Your C-264 has two
SHIFT keys and a SHIFT LOCK, which works like the shift lock on a
typewriter.

With the SHIFT key, you can get the graphic symbol on the right side on
each graphics key when you are in uppercase/graphics mode.

Your C-264 is automatically in uppercase/graphics mode when you turn it on.
In uppercase/graphics mode, all the letters appear uppercase when typed
without the SHIFT key.

The SHIFT key gets upper case letters when you are in upper/lowercase text
mode. You can tell you're in this mode when the letters you type are in lower
case except when you use the SHIFT key. You can go back and forth
between uppercase/graphics and upper/lowercase text modes by pressing
the SHIFT and [Cx] key at the same time.

RUN

STOP

Press this key to tell your C-264 to STOP what it is doing and give control
back to you. When the C-264 is running a BASIC program, you can stop the
program with this key.

When you hold down the SHIFT key and type this key, RUN tells the C-264 to
foad and run the first program on a disk in the disk drive.

THE CURSOR KEYS C[/}
A

It’s easy to move the cursor quickly around the screen in any direction. Just
press the cursor arrow key that points in the direction you want to go. Like
all keys on the C-264 keyboard, each cursor key has a REPEAT feature. This
automatic repeat keeps the cursor moving until you release the key.

NOTE: You can move the cursor over letters and numbers on the screen
without affecting those characters.

You can INSERT and DELETE characters from the line you are typing by
pressing this key. When you press DEL, that character immediately to the
left of the cursor disappears, and the cursor moves over to where the
missing character was. You can use the cursor keys to go back to the
middle of a line and then use DEL to DELete a letter. When you do this, the
letter to the left is deleted, and the rest of the letters on the line move over
one space to the left to close the gap left by the deleted letter.

You can open up space to insert letters and numbers by using the SHIFT
and INST keys. Space opens to the right of the cursor; the cursor itself does
not move. When you insert space in the middle of a line of letters, the rest of
the line moves to the right.

The INST/DEL key saves a lot of time when you want to edit or change what
you've typed.

10

When you press this key, the cursor immediately moves to the top left
corner of the screen. This is called the HOME position. Your screen stays
the same. If you hold down the SHIFT key and press CLR/HOME, not only
does the cursor move to HOME, but the screen clears. All that remains on
the screen is the blinking cursor at the top left corner of the screen. Press
HOME twice to cancel a screen window and return the cursor to the HOME
position.

This key doesn’t do anything by itself. It always works with another key. The
CTRL key works like the SHIFT key: you must hold it down while you press
the other key.

1. As the COLOR KEYS section explains, CTRL and a color key let you
choose the color of the text printed on the screen.

2. You can pause a program that is PRINTing on the screen by pressing
CTRL and the S key (press any key to resume program output).

3. CTRL is also used with the reverse on/off and flash on/off keys.

In addition, some software programs that you buy use the CTRL key for
special functions.

(g

Like the CTRL key, the Commodore key doesn’t do much by itself. It has
four functions:

1. When used with the SHIFT key, the @ key lets you switch between
uppercase/graphics mode and upper/lower case text mode.

2. When you're in either mode, the @ key acts as a shift to let you type
the graphics symbol on the LEFT side of each key. Just hold down @
and press the graphic key you want.

QJ w
'B@) Do)

T

3. When you want to change the color of the screen characters to one of
the 8 colors listed on the BOTTOM row on the face of the color keys,
press [Cf and the color key you want.

4. When you want to slow down a scrolling program display, hold down the
@ key. The display scrolling speed slows down considerably. When
you release the key, the display resumes normal speed.

11

THE COLOR KEYS

You can change the colors of the letters and numbers on the screen to any
one of the 16 colors available on your C-264. It’s simple to do:

¢ |f you want one of the 8 colors listed on the TOP row on the front of the
color keys (like BLacK), just hold down the CTRL key and then press the
color key with the color you want.

¢ If you want one of the 8 colors listed on the BOTTOM row on the front of
the color keys (like ORaNGe), just hold down the [Cx] key and then
press the color key with the color you want.

After you change the color, every character typed AFTERWARDS is in the
color you last chose.

Your C-264 lets you print the reverse image of any character. In other words,
if you are using black letters on a yellow background, you can use the
reverse image keys to print yellow letters on a black background.

Here’s all you do to get reversed images: press the CTRL key and the RVS
ON key. Now everything you type will be displayed in reverse until you press
the CTRL and RVS OFF, the RETURN key, or the ESCape key. This will
return you to typing normal (non-reversed) characters.

AR £

You can make the characters on your screen flash continuously. Just press
CTRL and the FLASH ON key to make whatever you type flash. Typing CTRL
and FLASH OFF, RETURN, or ESCape lets you type normal (non-flashing)
characters again.

12

ESCAPE

Use the ESCape key to perform many special screen editing functions, such
as setting the top and bottom of a display window.

Press the ESCape key and one of the letter keys listed below:

Automatic insert mode

Set the bottom of the screen window

Cancel automatic insert mode

Delete current line

Insert a line

Move to the start of the current line

Move to the end of the current line

Turn on scrolling

Turn off scrolling

Return to normal screen display size

Cancel insert, quote, and reverse modes

Erase everything up to the start of the current line
Erase everything up to the end of the current line
Reduce screen display

Set the top of the screen window

Scroll up

Scroll down

Cancel the escape function

XS<AHATOUVOZZIrrXce—0U0m>

SETTING SCREEN WINDOWS

Windows let you define an area of the screen as your work area. Everything
you type after setting a window will take place within the window (the lines
you type, LISTs of your programs, etc.) without affecting the rest of the
screen. You can put a window anywhere on the screen.

To set a window, follow these steps:

1. Move the cursor to the screen position you want as the top left corner of
the window.

2. Type the ESCape key, then type T.

3. Move the cursor to the screen position you want as the bottom right
corner of the window.

4. Type the ESCape key, then type B.

All screen output is confined to the window area you defined. Cancel the
window by pressing the HOME key twice. The cursor will go to the HOME
position.

THE GRAPHICS KEYS

As we mentioned before, when you turn on the C-264, it is in uppercase/
graphic mode. When you’re in this mode, you can type the full set of more
than 60 graphics you see on the fronts of many of the keys, as well as all

13

upper case letters without using the SHIFT key. The SHIFT key lets you type
graphics, not uppercase letters.

There are two graphic symbols on each graphics key:

e To print the graphic symbol on the right, hold down the SHIFT key while
you press the key.

e To print the graphic symbol on the left, hold down the @ key while
you press the key.

You can create pictures, charts, and designs by printing graphics side by
side or on top of each other, like building blocks. Chapter 6 explains more
about graphics.

You can switch between uppercase/graphics mode and upper/lowercase
mode by pressing the SHIFT and [Cx| keys at the same time. In either
mode, type BASIC commands without holding down the SHIFT key.

In upper/lowercase text mode, you can type upper and lowercase letters, just
like a regular typewriter. (You will have to shift for uppercase letters.) You
also can use all the graphics on the left side of the graphics keys, which you
type the same way as in uppercase/graphics mode: hold down @ and
press the graphics key. The left side graphics are ideal for creating charts,
graphs, and business forms.

SPECIAL SYMBOLS

The C-264 keyboard also contains special symbols not found on many
typewriters, or even on most computers. These special symbols include the
English Pound sign (£), pi (n), greater and less than signs (< >), brackets
([1), and arrows (t <). These special symbols keys are used in
programming your C-264.

PROGRAMMABLE FUNCTION KEYS

The four keys at the top of your keyboard are special function keys that let
you save time by performing repetitive tasks with the stroke of just one key.

You can display what each key does by typing KEY and pressing RETURN.

KEY

KEY 1,“GRAPHIC” or “SYS ####: PROGRAM NAME”
KEY 2,“DLOAD” + CHR$(34)

KEY 3,“DIRECTORY” + CHR$(13)

KEY 4,“SCNCLR” + CHR(13)

KEY 5,“DSAVE” + CHR$(34)

KEY 6,“RUN” + CHR$(13)

KEY 7,“LIST” + CHR$(13)

KEY 8,“HELP” + CHR$(13)

14

Here’s what each key does:

KEY 1 enters one of the GRAPHIC modes when you supply the number
of the graphics area (e.g., GRAPHIC 2, which is split screen, high
resolution mode) and a RETURN.

KEY 2 prints DLOAD “ on the screen. All you do to load a program from
disk is enter the program name and the closing quotes, and hit
RETURN.

KEY 3 lists a directory of files on the disk in the disk drive.
KEY 4 clears the screen (even in one of the graphic modes.)

KEY 5 prints DSAVE “ on the screen. All you do to save the current
program on disk is enter the program name and the closing
quotes, and hit RETURN.

KEY 6 runs the current program.
KEY 7 displays a listing of the current program.
KEY 8 (the HELP key) highlights errors in program statements.

To use one of these functions, just press the function key. You need to use
the SHIFT key for keys 4, 5,6, and 7.

You can redefine any of these keys to perform a function-that suits your
needs. Redefining is simple: just use the KEY command, which is explained
in Chapter 8 and in Appendix B. You can redefine the keys from BASIC
programs, or change them at any time in direct mode. (The new definitions
are erased when you turn off your C-264.) You can redefine as many keys as
you want and as many times as you want.

THE HELP KEY

When you make an error in a program, the C-264 displays an error message
to tell you what you did wrong. These error messages are explained in
Appendix A.

You can get more assistance with errors in BASIC programs by using the
HELP key. After an error message, press HELP to locate your error exactly.
When you press HELP, the line with the error is displayed on the screen with
the error printed in reverse. For example:

?SYNTAX ERROR IN LINE 10 C-264 displays this
HELP You press HELP

10 [l Nameie] 1V e]oJolS{Relol T ILNINACN C-264 displays this with your

error highlighted

15

CHAPTER 3

GETTING TO KNOW
YOUR COMMODORE
264

Some simple C-264 programs.

How to correct typing mistakes.
Introduction to the C-264 text screen.
More about PRINTing on the screen.

Introduction to color and reverse
printing.

16

TRY TYPING THIS PROGRAM:

| Type this program exactly as it appears here. Don’t leave out the numbers at
the beginning of the line. Be sure to press the RETURN key at the end of
each line.

This line tells your
computer to print C-264
on the TV screen.

1 PRINT “C-264" [RETURN |
This line tells your < = 2 GOTO 1

(' computer to go back to RUN
. line 1 and print C-264 5 m
~dgain. This commands your ~

Press the RUN/STOP key to stop the program. Why did your C-264 print its
name so many times? GOTO tells your computer to go back to line 1 and
PRINT C-264 again and again. This repetition is called a loop. .-

Now type this:

You don’t type this; your
C-264 does, to tell you it's
\READY for a new
program.

Here you tell the
computer to forget the

last program and get TT> NEW
ready for a new one, READY

1 PRINT “C-264"
2 COLOR 0,8
RUN

Same line 1 as last timed
PRINT tells your C-264 to
display everything

etween the quotes.

Here you tell the
computer to change the
color of the screen.

This time there’s no GOTO loop in the program, so the orders are carried out
just once.

Here’s another short program that gives you a hint of how easy it is to draw
graphics on your C-264:

don’t forget this line: NEW
10 COLOR 0,12

20 GRAPHIC 2,1
30 CIRCLE,160,100,65,10

RUN

17

Now your screen should be pink and an ellipse should have been drawn on
the screen. Try this:

1. Type LIST. The program is listed at the bottom of the screen.

Use the cursor key to move to the number 10 at the end of line 30.
Change 10 to 50,

Press RETURN,

Move the cursor to a blank line.

Now type RUN to draw a circle on the screen.

Finally, type this line:

o > N

40 GRAPHIC 0,1
RUN

The circle is drawn again, but this time it disappears quickly and the READY
message is back at the top of the screen.

Here’s another little program that draws on your screen:

NEW [RETURN |
10 GRAPHIC 2,1
20 BOX 1,100,100,50,50 =
30 BOX 1,100,100,150,150 [ReTuRy]
RUN [RETURN |
Now add this line:

40 BOX 1,150,150,50,50 [RETURN |
RUN
Now add this line:

40 GRAPHIC 0,1 [RETURN]

RUN [RETURN |

HOW TO CORRECT TYPING MISTAKES

If you make a mistake when you’re typing something, there are several
ways to make changes.

1. YOU CAN RETYPE A LINE anytime, even after you’ve RUN the program.
The C-264 automatically replaces the old line with the new one. The
C-264 doesn’t put the new line in the same place as the old one, and the
old one still appears on the screen, but the C-264 ignores it. When you
have two statements with the same line number, the C-264 only
acknowledges the last one entered. For example, if your program looks

like this:
10 COKOR 0,3
20 PRINT “C-264"

Press the RETURN key to get to a fresh line, and just retype line 10 correctly:

10 COLOR 0,3

Now the first line 10 is replaced by the second line 10. You can check this
by typing LIST, which displays a fresh copy of your program. When you LIST
a program, all lines appear in correct order and the replaced lines don’t
appear:

LIST
10 COLOR 0,3
20 PRINT “C-264" ReTuR |

Replacing lines in a program is also a good way to experiment with your
computer. When you replace a line, the new one doesn’t have to be anything
like the old line. For example, instead of correcting the spelling of COLOR,
you can type this:

10 PRINT “I LOVE MY”
Now RUN the program and see what happens.

2. YOU CAN ERASE AN UNWANTED LINE just by typing the number of the
line and pressing RETURN. The computer ignores the line even though it
might still appear on the screen. Type LIST to make sure the line is gone
from the program.

10 PRINT “I LOVE MY”
20 PRINT “C-264” | RETURN |
10 | RETURN |
LIST | RETURN |
20 PRINT “C-264" RETURN

19

3. YOU CAN EDIT A LINE. Use the cursor keys to move to the place in the
line that you want to change. Now just type over what you want to
change. Press RETURN when you finish.

ap
& ib@

NOTE: You don’t have to be at the end of the line to press RETURN.
Your C-264 will remember the whole line even if you press RETURN in
the middle of the line.

10 PRINT “SARAH IS MY NAME” EGIZE

If you want to change the name to GLENN, move the cursor to the S in
SARAH.

10 PRINT “EJARAH IS MY NAME” @

And now just type GLENN over SARAH and press [EGILE .
10 PRINT “GLENN IS MY NAME”

NOTE: When you type a quotation mark after a PRINT statement, you enter
QUOTE MODE. In quote mode, some keys work differently. For example, if
you press a cursor-down arrow while you’re in quote mode, the cursor won't
move and you'll see a reverse Q printed on the screen. When the PRINT
statement executes, the reverse Q isn't PRINTed; instead the cursor moves
down. In quote mode, the computer assumes that everything you type is
something you want to display or do later when the PRINT statement
executes.

20

4. YOU CAN OPEN UP SPACES IN A WORD OR LINE with the INST key
(get this insert key by holding down SHIFT while you press INST/DEL).
Hold the keys down until you open up as many spaces as you need.
(Notice that the cursor stays in the same place while spaces open up to
the right.) Then just type what you want to insert.

10 PRINT “264”

To change this to | LOVE MY 264, move the cursor to the first 4 and press
the SHIFT and INST keys until enough space opens up. Don’t bother to
count out the spaces. You can just guess and then open up more if there

aren’t enough/O
cursor
10 PRINT “I 264"
Now add the other words:
10 PRINT “I LOVE MY 264"
5. YOU CAN ERASE CHARACTERS AND CLOSE UP SPACE with the DEL

key (get this delete key by pressing INST/DEL). This key erases
characters or spaces immediately to the LEFT of the cursor.

10 PRINT “ANDREW IS MY NAME”

You can change this to MIKE IS MY NAME by moving the cursor to the D in
ANDREW, pressing the INST/DEL key twice, and typing MIKE.

10 PRINT “ANIBIREW IS MY NAME” @

and press INST/DEL twice.
10 PRINT “[BJREW IS MY NAME”
Type in MIKE and press RETURN.

21

A SIMPLE C-264 PROGRAM

Now that you’ve experimented a little with your C-264, here’s a simple

program to try:

STEP 1: Clear the screen by holding down the SHIFT key while you press
the CLR/HOME key. This erases your screen.

STEP 2: Clear out old programs by typing NEW. Press the RETURN key.

STEP 3: Type this program exactly as it appears. Remember to type the
line numbers and all punctuation marks. Use the tips for
correcting mistakes (turn to the preceding pages to find them) if
you type something incorrectly. Don’t forget to press RETURN
after each line.

NOTE: Remember, you can stop a program by pressing the
RUN/STOP key.

NEW
1 COLOR 0,8

2 PRINT “I LOVE MY C-264 ™;
3 COLORO0,3
4 PRINT “MY NAME IS your name ”;

5 COLOR 0,7
6 PRINT ‘@@ Q@QQPP
7 GOTO 5

RUN

Be sure to leave a space here.

Be sure to leave a space here.

Get the heart by holding down
SHIFT while you press the S key
6 times.

After you STOP the program (use the RUN/STOP key), type LIST. When the
program is displayed on your screen, look at the tips for correcting errors
and change this program so that a friend’s name appears in the program.

TIP: Want to slow down this program without stopping it? Just hold down
the i€ key.

22

INTRODUCTION TO THE C-264 TEXT SCREEN

Try typing this program:

NEW
press SHIFT and S) TPRINT “ %"
2 GOTO 1
RUN

Now your screen fills with hearts. When the entire screen is covered with
hearts, press the RUN/STOP key to end the program. This program shows
you how big your C-264’s screen is.

Now type this program:

press SHIFT and NEW | RETURN |
CLR/HOME. 1 PRINT “[J” | RETURN |

2 FORX = 1TO 40 [RETURN

, 3 PRINT “ qp"; [RETURN

« press SHIFT and S 4 NEXT v
RUN /

When you RUN this program, the first row on your screen fills completely
with hearts. There are 40 hearts altogether. Since the row is full, you can see
that there are 40 positions across the screen. Each position across the
screen is called a COLUMN.

Now type this program:

~ NEW
1 PRINT “L 2"
2FOR X =.1TO 25 RETURN
3 PRINT Q

4 NEXT
(press SHIFT and Z RUV‘

When you RUN this program, the first column on your screen fills with
Jiamonds. There are 25 diamonds printed, but the first three disappear at the
lop of the screen because the word READY surrounded by two blank lines
always appears at the end of the program. There are, then, 25 rows. So your
(> 264 has 40 columns and 25 rows.

”press SHIFT an
CLR/HOME.

23

The C-264 has 1000 different positions on the screen for letters, numbers,
graphic symbols, etc.

NOTE: Sometimes you’ll type a particularly long line on your C-264, such as
this:
1 PRINT “ ANTIDISESTABLISHMENTARIANISM OPPOSES ANARCHY”

You’ll notice that as you type this, you run out of room on one row. But keep
typing; the C-264 automatically moves on to the next row and continues
printing there until your line is finished.

Now try RUNning this one line program. The message is printed on two
rows. If your line is longer than one row, the C-264 lets it spill over to the
next row. The C-264 considers the line ended when you press the RETURN
key, not when you type to the end of the row. You’ll get used to this as you
use your C-264.

Now type this program:
NEW
1PRINT @ ™,
2GOTO 1
___RUN

When you RUN this program, you can see that it’s possible to tell the C-264
exactly where to PRINT something on the screen.

leave a space on each
side of the heart.

24

MORE ABOUT PRINTING ON THE SCREEN
Try typing this program:

READY
1 PRINT “A",“B”

2 PRINT “A”;“B”

1 yd@/ RUN RETURN
— line 1 PRINTed this
A

AB B_(fine 2 PRINTed this

If line 1 and line 2 seems so much alike, why is there such a difference in
what they PRINT on the screen? The difference is in the punctuation
between the items this program PRINTSs.

When you use a comma to separate items in a PRINT statement, the items
are PRINTed several spaces apart. When you use a semicolon, the items are
PRINTed right next to each other.

As you recall, the C-264’s screen has 40 columns across. These columns are
divided into four 10 space areas, called PRINT ZONES. When you use a
comma to separate PRINTed items, the C-264 PRINTSs the first item in the
first print zone, the second item in the second print zone, etc. The commas
work like tabs on a typewriter.

PRINT ZONE 1 PRINT ZONE 2 PRINT ZONE 3

here’s how the screen
looks:

A Aw

N
r LI § LI 1

123456789 10 11 12 13 14 15 16 17 18 19 20 21 22 23
A B

If you ask the C-264 to PRINT more than 4 items separated by commas, the
C-264 automatically goes to the next line to PRINT. For example:

PR'NT lIA"'“B’!,‘(C,,,“D”’“ E",l(F,!

PRINTSs this:
A B C D
E F

When you use semicolons to separate items in a PRINT statement, the C-264
ignores the print zones and PRINTs all the items one after another:

PR'NT “A";llB’);l(C";“D’l;“E)’;K‘F’!
PRINTS this:
ABCDEF

25

Here’s what happens if the first PRINT item is 12 letters long and the second
item is separated by a comma:

PRINT “ABCDEFGHIJKL”,“M”

PRINTSs this:
ABCDEFGHIJKL M
print print print
zone 1 zone 2 zone 3

Now clear your screen and type this program:

NEW

1 PRINT 1,2

2 PRINT 1;2

RUN
1 2
12

This program shows you two new things:

1. Numbers don’t have to be put in quotes in a PRINT statement. (You'll
learn more about this in Chapter 4).

2. Numbers are displayed with a space on both sides of them, so when you
use a semicolon, the numbers aren’t PRINTed right next to each other
the way letters are.

Numbers are PRINTed with a space in front because the C-264 leaves
room for a number’s sign. If the number is negative, a minus sign
appears in the space before the number. If the number is positive, you
see a blank space because the C-264 doesn’t ordinarily display the plus

sign.
Now type this program:
NEW
1 PRINT —1,-2
2 PRINT 1,2
RUN
—1 —2
1 2
Notice that the numbers are in the same place whether they are positive
or negative.

These examples give you an idea of how you can put messages on the
C-264’s screen. As you read this manual and practice using your C-264,
you’ll learn more about displaying text and graphics.

26

INTRODUCTION TO COLOR AND REVERSE PRINTING

The C-264 can display numbers, letters and graphic symbols in 16
different colors. You can also display all these characters in reverse.

STEP 1.
STEP 2.

STEP 3.

STEP 4.

STEP 5.
STEP 6.

STEP 7.

STEP 8.

Clear your screen by pressing SHIFT and CLR/HOME.
Hold down the CTRL key and press the RVS ON key:

Release the keys and hold down the space bar (the long bar at the
bottom of the keyboard).

Hold down the space bar as long as you want. While you hold
down the space bar, a line the same color as the letters on your
screen should get longer. If the line gets to the end of the row, it
continues on the next row.

Release the space bar (but don’t press the RETURN key).

Hold down the CTRL key and press one of the color keys (not a
color that’s already on your screen). As soon as you do this, the
cursor will be the color of the key you pressed.

Hold the space bar down again. Now your C-264 will draw a line in
the new color. Continue changing colors with the CTRL or

keys and the color keys. Then hold down the space bar to make
different colored lines.

Turn off reverse print by holding down CTRL and pressing the RVS
OFF key. If you press the RETURN key, reverse will also be turned

off. m

27

Try typing some letter in reverse. Just hold down CTRL and RVS ON to turn
on reverse, and then type whatever you want. Reverse letters make excellent
headlines. You can also use them to highlight special words and numbers.
Try this:

NEW &
10 PRINT “IRICOMMODORE”;
20 GOTO 10

RUN

~N
press CTRL and ReVerSe ON

Now press RUN/STOP and replace line 20 with this line to make letters flash
on your screen:

20 PRINT* TN264”
RUN

press CTRL and FLASH ON

28

CHAPTER 4

USING SOFTWARE

Introduction.

How to use built-in software.
How to load cartridges.

How to load cassette tapes.

How to save programs on cassette
tapes.

How to load programs from diskette.
How to header a diskette.
How to save programs on diskette.

How to find out what programs are on a
diskette.

Getting software through
telecommunications.

29

INTRODUCTION

The family of software available for your C-264 is growing quickly. Your
dealer can keep you up-to-date on new products and inform you about the
features of software that’s currently available.

Your Commodore 264 can use software that is built-in or that is recorded on
CARTRIDGES, CASSETTE TAPES, and DISKETTES that are available from
your Commodore dealer. All you do is load them into your C-264. And you
can create and store your own programs on cassette tapes or floppy disks.

HOW TO USE BUILT-IN SOFTWARE

Your C-264 can be equipped with a wide variety of function key software
packages. These are programs built into the C-264, which you call by
pressing the appropriate FUNCTION key. The programs range from Logo to
The Magic Desk. The built-in package is always available for use. When you
turned on your C-264, both BASIC and the function key software packages
announce themselves through their power-on messages. Also, you can use
the KEY command to see the function key definitions. If there is function
key software built into your C-264, the definition for KEY 1 will be:
SYSXXXX:package name. Just press function key f1 and hit RETURN to
enter the built-in program.

Function key software packages are also available on cartridge. If you have
plugged in a function key cartridge into your C-264, start the program by
pressing function key f2.

HOW TO LOAD CARTRIDGES

You can use a variety of business and personal programs, as well as
exciting, arcade-style games available on cartridge for your C-264.

Follow these steps to load cartridges:

30

STEP 1 TURN OFF your C-264.

IMPORTANT: YOU MUST TURN OFF YOUR COMPUTER BEFORE YOU
INSERT OR REMOVE CARTRIDGES. IF YOU DON’T, YOU MAY DAMAGE
THE CARTRIDGE AND THE COMPUTER.

STEP 2. Holding the cartridge with the nameplate facing UP, insert the
cartridge firmly in the cartridge slot on the back of your computer.

Plug cartridge
in here.

STEP 3. Turn on your C-264.

STEP 4. Begin the game or program according to the instructions that
come with the software. Usually all you do is press one key to
start.

31

HOW TO LOAD CASSETTE TAPES

A variety of software products for the C-264 is available on cassette tapes.
These cassette tapes look just like the ones with recorded music that you
can play on a stereo. Cassette tapes run in the Datassette tape recorder,
available from your Commodore dealer.

You can also use cassette tapes and the Datassette to store programs you
write yourself. The next section explains how to save programs on tape.

The steps for loading tape are the same whether you are using purchased
software or programs you saved yourself.

STEP 1. Insert the cassette into your cassette recorder and close the door.

STEP 2. Type LOAD and press the RETURN key. The computer displays
this message:

PRESS PLAY ON TAPE.

STEP 3. Rewind the tape to the beginning. The screen will go blank. Just
press the REWIND button on the cassette recorder.

STEP 4. When the tape is rewound to the beginning, press the PLAY
button on the datassette.
When the program is found, the screen displays this message:

FOUND program name

STEP 5. Press the Commodore key to load this program. If there is more
than one program on the tape, and the program the C-264 found
isn’t the one you want, press the space bar to keep searching.

When the program is loaded, the word READY appears. If you want to stop
the loading before it’'s complete, press the RUN/STOP key. After the
software is loaded, type RUN to start the program. You can also LIST it or
change it, assuming it is a BASIC program.

To LOAD a specific program on the tape, use the LOAD “program name”
form of the LOAD command.

32

HOW TO SAVE PROGRAMS ON CASSETTE TAPES

When you write a program and want to save it on cassette tape, follow these
steps:

STEP 1. Type:
SAVE “program name”

The program name you use can be anything you want, but can be no more
than 16 letters and/or numbers long.

STEP 2. Press the RETURN key. The computer displays this message:
PRESS RECORD AND PLAY ON TAPE

STEP 3. Press the RECORD and PLAY buttons on your cassette recorder.
The screen goes blank. When your program is saved, the word
READY appears on the screen.

Examples of SAVE Commands for Cassette Tape:

SAVE “MYJOB”
SAVE “3TEST”

33

HOW TO LOAD PROGRAMS FROM DISKETTE

Disks are fast and easy to use. Be sure to handle your disks and your disk
drive carefully.

The steps are the same for loading all disks:

STEP 1.
STEP 2.

STEP 3.

STEP 4.

STEP 5.

STEP 6.

Make sure that your disk drive is ON.

Insert the disk into the disk drive. The label side of the disk must
face up. Put the disk in so that the labelled end goes in last while
the end with the exposed oval goes in first. Look for a little notch
on the disk (it might be covered with a little sticker). This notch is
on the left side as you put in the disk, assuming that you're facing
your disk drive. Be sure the disk is in all the way.

Close the protective door on the disk drive after you insert the
disk.

Type:
DLOAD “program name”

Press the RETURN key. The disk spins and your screen says:

SEARCHING FOR PROGRAM NAME
LOADING

READY.
[

Your software is ready to use.
Type RUN and RETURN to start the program.

If the red light on the disk drive blinks after the DLOAD is finished,
something went wrong. You can find out what happened by typing:

?DS$

Examples of DLOAD commands:

DLOAD “*” LOADs the 1st program on the disk.
DLOAD “MYFILE” LOADs a disk program called MYFILE.
DLOAD “SET*” LOADSs the first program on the disk that begins

with the letters SET.

34

HOW TO HEADER A DISKETTE
HEADERING prepares your new BLANK disk for use.

IMPORTANT: DO NOT HEADER A DISK THAT HAS ANYTHING ON IT
UNLESS YOU WANT TO ERASE THE ENTIRE DISK. HEADERING ERASES
EVERYTHING ALREADY ON A DISK.

To HEADER a disk, enter this command exactly as it appears. Type your own
disk name and disk id number, which are explained below.

HEADER “disk name”, Ddrive# ,lid

e The name you use is the name of the entire disk. Give the disk any name
up to 16 characters.

e If you have a dual drive, add DO or D1 to identify the drive number.

e The id is the letter | and any two letters and/or numbers, like 121, IR5,
ISM, etc. Give the disk any id you want, but you should give every disk a
different id.

ARE YOU SURE?

As soon as you press RETURN, the C-264 asks ARE YOU SURE? This is to
give you a last chance to change your mind.

To header a disk, type YES or Y and press RETURN. If you decide not to
header the disk, type NO or N and press RETURN.

Here are some examples of the HEADERing command:

HEADER “LETTERS”,107
HEADER “FINANCES”, D0,IS3

Now that you know how to HEADER a disk, you're ready to use disks to
write and save programs on your C-264. Appendix B has more information
about the HEADER command.

35

HOW TO SAVE PROGRAMS ON DISKETTE

When you want to reuse a program you've written, be sure to SAVE it before
you LOAD another program. If you don’t you’ll lose the program.

When you change a previously SAVEd program, you have to SAVE it again if
you want to keep the new version.

When you reSAVE a program, you are replacing the old version with the new
one. If you want to keep both the old and the changed versions, you have to
give the new one a different name when you SAVE it.

Follow these simple steps to save a program on disk:
STEP 1. Type DSAVE “program name”

STEP 2. Press RETURN. The disk drive makes a noise, and the computer
displays this message when the program is saved:

SAVING “program name”
OK

READY.

[|

Example: DSAVE “MYPROG5”

If the red light on the disk drive blinks after the DSAVE is finished,
something went wrong. To find out what happened, type:

2DS$

HOW TO FIND OUT WHAT PROGRAMS ARE ON A DISKETTE

When you SAVE programs on disk, the computer keeps a table of contents
for that disk. You can display the table of contents to see what’s on a disk.
Just type this command:

DIRECTORY

As soon as you press RETURN, your C-264 displays the name of each
program on your disk.

You can also display just part of the table of contents:
DIRECTORY “MY*”

Lists every file on the disk that starts with the letters MY.

GETTING SOFTWARE THROUGH TELECOMMUNICATIONS

If you have a modem, you can get access to huge amounts of software and
other information from computer information services like CompuServe and
The Source. Commodore supports its own service called the Commodore
Information Network, which is available through CompuServe. Many
programs are available on the Commodore user databases.

36

CHAPTER 5

BEGINNING BASIC

Doing calculations on your C-264.
Immediate mode.

Using variables.

Inputting information.

Using loops: FOR ... NEXT

37

DOING CALCULATIONS ON YOUR C-264

You can use PRINT to do more than just display what you put in quotation
marks. You can use your C-264 like a simple calculator. Besides the standard
+ and - signs, your C-264 uses the * sign for multiplication and the / sign
for division and fractions. (Computers use the * sign instead of an X for
multiplication because a computer can'’t tell the difference between the
letter X and the mathematical symbol X.)

Basic Mathematical Operators Basic Relational Operators
Addition + Greater than >
Subtraction - Less than <
Division and fractions / Equals =
Multiplication * Greater than or equal >=
Exponentiation) Less than orequal <=

To calculate a problem, type PRINT and then the math problem. Don’t put
the problem in quotes.

Type this program:

NEW
1PRINT 142,21
2 PRINT 2*2, 4@
RUN

31

4 2

For the first time, PRINT didn’t print exactly what you typed in the
statement. Instead, the C-264 solved the calculations and PRINTed the
answers. All you have to do to use PRINT to calculate is omit the quotation
marks. Now try this:

NEW

1 PRINT “2*3+1="
2 PRINT 2+ 7)/3
RUN

2*3+1=
3 this space is left for the answer’s sign

38

Since the calculation in line 1 is in quotes, the C-264 just PRINTs the
problem as if it were any text: exactly as it appears between the quotation
marks. The problem isn’t solved, and no space is left for the numbers’ sign.

Now move the cursor back to line 1 and change the line so it looks like this:

— don’t forget the semicolon
1

1 PRINT “2*3+1=",2"3+

2*3+1=7 sign
3 vwanswer for line 2 stays>
the same
If you want to both PRINT the problem AND solve it you have to type it
twice: once in quotes and once out of quotes.

NOTE: The C-264 doesn’t accept commas as part of a number. For example,
always type 109401 instead of 109,401. If you put a comma in a number, the

C-264 thinks you mean two numbers (separated by the comma), so the C-264
would read 109 and 401 instead of 109401.

FRACTIONS AND DECIMALS

You can write a fraction like this: 1/2
or like this: .5

If you put a fraction in a PRINT statement, your answer will always be
returned as a decimal or whole number. For example:

PRINT 139/493 + 5 | RETURN |
5.28194726

Here’s an example that uses pi (3.1415926535...), which represents the ratio
of the circumference of a circle to its diameter. Just type the pi key.

PRINT /374
8.39998036E-03

39

SCIENTIFIC NOTATION

What did the C-264 mean by the E-03 part of the above answer ? The C-264
displays decimal numbers in the range — 999,999,999 to 999,999,999 in
standard numerals, but numbers beyond this range are automatically
displayed in scientific notation. This special notation lets the C-264 display
large numbers in fewer digits.

Scientific notation takes this form:

only ONE digit is shown to the left
///' of the decimal point
number{.number]E<+ | —>number

the third number is the number of
places the decimal point is moved

For example:

20 = 2E+1 the decimal point is moved 1 digit left
105000 = 1.05E+5 the decimal point is moved 5 digits left
0666 = 6.66E—2 the decimal point is moved 2 digits right

40

IMMEDIATE MODE

You can put any calculation in a program, or get an immediate answer by
typing PRINT and the problem without a line number, like this:

PRINT 3-6

-3

PRINT 24/(6 + 2)
3

When you don’t have a line number before a BASIC statement, you don’t
have to type RUN to tell the computer to follow the instruction. When you
press RETURN, you get instant results. Not having a line number means the
command should be acted on immediately; it’s in IMMEDIATE, or DIRECT
MODE. Having a line number means the statement is part of a BASIC
program; it’s in PROGRAM MODE.

You’ve used several other immediate mode commands: RUN, NEW, and
LIST. You can use PRINT in immediate mode to instantly solve calculations
or display messages.

PRINT “2 TO THE 3RD POWER EQUALS’;213

this arrow stands for
exponentiation; get it by
typing SHIFT and 0

the message is PRINTed
and then the problem’s
solution is PRINTed

2 TO THE 3RD POWER EQUALS 8

TIPS ON ERRORS

If you make a mistake in your PRINT statement, use the INST/DEL keys to
make corrections. You can change the line as much as you like before you
press the RETURN key.

If you make a mistake that you don’t catch before you press RETURN, your
C-264 displays an error message to help you figure out what you did wrong.
For example:

?SYNTAX ERROR

If you get this message, check over what you typed to see where you made a
mistake. The computer is very picky, and it can’t follow instructions that
contain spelling errors or other mistakes. If you can’t figure out your
mistake, refer to Appendix A for more information about error messages.
Once you find your mistake, you can use the cursor control keys to move tho
cursor over the error, and then use the INST/DEL keys to correct it.

41

PROGRAMMING TIP

You can abbreviate PRINT (and many other BASIC commands.) The
abbreviation for PRINT is the question mark. For example:

?21/4*3 isthesameas PRINT 1/4*3
Other BASIC abbreviations are listed in Appendix C.

MORE ABOUT MATHEMATICAL CALCULATIONS

The last example shows that you can perform more than one calculation in
one line. Try typing this:

PRINT 200 + 50/5
Is the answer what you expected? Try this:
PRINT (200 + 50)/5

The C-264 always solves problems in a certain order. Problems are solved
from left to right, but within that general rule, some types of calculations are
solved first. The order which the C-264 evaluates expressions is called the
ORDER OF PRECEDENCE.

FIRST: C-264 checks for negative numbers (not subtraction, just negative
numbers).

SECOND: C-264 solves any exponents.
THIRD: C-264 solves all multiplications and divisions, from left to right.
FOURTH: C-264 solves additions and subtractions, from left to right.

BUT: C-264 always solves any portion of the problem surrounded by
parentheses first. You can even put parentheses within parentheses:
36 * (12 + (A /3)). The innermost parentheses are solved first.

Sometimes it’s a good idea to put negative numbers in parentheses for
clarity. For example, if you want to add 45 and -5, type it like this:
45 + (- 5). The C-264 will understand it either way.

42

USING VARIABLES

The example 36*(12+ (A/3)) shows one of the most powerful features of a
computer. When we used a letter instead of a number in a mathematical
problem, we used a VARIABLE. A variable stands for a value:

10A=3

20 PRINT “TOTAL:";A*4

RUN

TOTAL: 12

There are three types of variables you can use:

Type Symbol | Description Examples | Sample Values

Integer % whole numbers X%, A1% | 15,102, 3

Text string $ letters, numbers, X$, MS$ | “TOTAL:”, “$65”,
and all other “DAY 17, “CBM”
characters in
quotes

Floating real (decimal) X, AB, T4 | 23.5, 12,

point or whole numbers 1 1.3E+2

Always use the right variable type. If you try to do something like assign a
word to an integer variable, your program won’t work.

Besides using PRINT to add, subtract, multiply and divide, you can figure
exponents and do advanced mathematical functions. Appendix B shows you
how to use BASIC functions to quickly and simply figure square roots,
cosines, and lots more.

TRY TYPING THIS PROGRAM

NEW
10 INPUT “WHAT'’S THE DATE”;D$

20 INPUT “WHAT’S YOUR NAME”;N$

30 SCNCLR

40 PRINT* ON ”;D$;“, ";N$;“ LEARNED MORE ABOUT USING
THE C-264”

RUN press the cursor-down arrow 5 times

When you RUN this program, type in answers to the questions WHAT’S THE
DATE? and WHAT’S YOUR NAME?.

43

INPUTTING INFORMATION

The last example showed you a new BASIC statement, and a new way to
enter information. INPUT lets you enter words and numbers WHILE the
program is running. The greatest advantage to this is the reusability
INPUTting brings to programs.

For example, if the last program had the line PRINT “OCTOBER 31", you'd
have to change the line before you executed the program whenever the date
isn’t October 31. With the INPUT statement, you don’t change the program.
Instead, every time you reuse it, you supply fresh information.

Try this program.

NEW

10 INPUT “KEEP GOING OR STOP”;X$
20 PRINT “YOU TOLD THE C-264 TO ”’;X$
30 IF X$ = “STOP” THEN END

40 GOTO 10

RUN

KEEP GOING OR STOP? GO <=———
YOU TOLD THE C-264 TO GO

KEEP GOING OR STOP? CONTINUE
YOU TOLD THE C-264 TO CONTINUE
KEEP GOING OR STOP? STOP
YOU TOLD THE C-264 TO STOP

Here’s what happens in this program:

Line 10 tells the computer to display a question, called a PROMPT, to tell
you to INPUT a value for X$. The program waits until you supply the value
before continuing with the program.

Line 20 PRINTs a message and the value you INPUT for X$.

Line 30 tells the computer to end the program immediately IF the value you
INPUT for X$ is STOP. When this happens, line 40 is not executed. If the
value you INPUT is not STOP, the program doesn’t end.

You type in these words.
The Commodore 264 prints
the rest.

44

Line 40 tells the computer to go back to line 10 so you can INPUT another
value for X$.

You don’t have to include a message in an INPUT statement. When you
don’t, the computer displays a question mark to tell you it’s waiting for data
INPUT. For example:

NEW

10FORC = 1TO3
20 INPUT X

30 PRINT “TOTAL:”;X*1.06
40 NEXT C

RUN

755

TOTAL: 5.83

?1.00

TOTAL: 1.06

?76.97

TOTAL: 7.3882

45

USING LOOPS: FOR. .. NEXT

So far we’ve shown you several ways to make a program repeat some or all
of its lines. GOTO and IF . .. THEN statements are two ways to control and
repeat program execution.

FOR ... NEXT statements let you create program LOOPS that control the
number of times a segment of a program is executed. The FOR statement
sets a limit on the number of times the loop will execute by assigning a
range of values to a variable. FOR works like this:

FOR counter = first time TO last time
do something until the last value for the counter is reached
add the NEXT value to the counter

The NEXT statement marks the end of a FOR . . . NEXT loop. When the
program reaches the NEXT statement, the computer sends control back to
the FOR statement. The computer then increases the loop counter value by
1 (or whatever the value named in a STEP statement) and checks to see if
the end limit of the loop has been reached. If the end limit has been
exceeded, control is transferred to the statement following NEXT. If the end
limit has not been reached, the loop continues.

NEW
10 FORCT = 1TO 4
20 PRINT “COMMODORE COMPUTERS ";“COUNTER =";CT

30 NEXT CT
40 PRINT “FINAL COUNTER VALUE =";CT
RUN

COMMODORE COMPUTERS COUNTER = 1
COMMODORE COMPUTERS COUNTER = 2
COMMODORE COMPUTERS COUNTER = 3
COMMODORE COMPUTERS COUNTER = 4
FINAL COUNTER VALUE = 5

Ordinarily, every time a FOR . . . NEXT loop executes, the value of the
counter increases by one. You can vary the amount of the increase by
adding a STEP statement to the FOR statement:

FORCT = 1TO 4 STEP 2 this STEP adds 2 to the counter each time
the loop executes, so this loop executes
twice, not four times

FORCT = 1 TO4 STEP 5 this STEP adds .5 to the counter, so this
loop executes seven times

FORCT = 4TO 1 STEP -1 a counter can run from a higher to a lower
number IF you use a negative STEP

46

CHAPTER 6

USING GRAPHICS AND
COLOR

Keyboard colors

Graphics characters

Character animation

Controlling colors

High resolution graphics

Points, lines, and labels

Squares, circles, polygons, and painting
Multi-color graphics

47

KEYBOARD COLORS

You can change the color of the characters on the screen to improve
readability or to find a color combination you like. Here’s how to see how the
different color characters look on your screen:

STEP 1. Hold down the CTRL key.

STEP 2. Press the 2 key while you're holding the CTRL key down. The
cursor turns white.

STEP 3. Let go of CTRL and type some letters. Everything you type
appears in white now.

HOLD CTRL COLOR
WITH COLOR KEY | RESULT
BLACK
WHITE
RED
CYAN
PURPLE
GREEN
BLUE
YELLOW

Table 1: Colors using CTRL key

Using the CTRL key with the keys between 1 and 8 lets you choose the
colors shown on the top of each color key.

Now hold down the @ key. By typing on the keys between 1 and 8, the
cursor changes one of the 8 colors printed on the bottom of each color key.
All 16 colors can appear on the screen at the same time.

ONO O WN =

HOLD (Cx] COLOR
WITH COLOR KEY | RESULT
ORANGE
BROWN
YELLOW-GREEN
PINK
BLUE-GREEN
LIGHT BLUE
DARK BLUE
LIGHT GREEN

Table 2: Colors using (< key

ONOOEA WN =

48

GRAPHIC CHARACTERS

Each letter key contains 2 different graphic characters, as do the @, —, *,

and £ keys. To print graphic characters, you must hold down the SHIFT or
l_C_xJ key while you press the key for the graphic symbol you want.

When your C-264 is in uppercase/graphic mode, hold down SHIFT and press

a letter key to display the graphic character on the right side of that

letter key. These characters include the playing card suits, a solid and a

hollow ball, and a set of lines and connecting characters that let you draw
many different pictures on your screen.

Here are some examples to help you get used to these characters:
Exercise 1: Large Circle

Step 1: Press down the SHIFT LOCK key. It should stay down.
Step 2: Hit the letter U then the letter I.

Step 3: Hit the EEILM key.

Step 4: Hit the letter J then the letter K.

Step 5: Hit the EEILLE key.

Exercise 2: Snake

Step 1: Press down the SHIFT LOCK key. It should stay down.
Step 2: Hit U, then |, then U, then |, then U, then I.

Step 3: Hit the IEEIIM key.

Step 4: Hit K, then J, then K, then J, then K, then J.

Step 5: Hit the key.

Exercise 3: Crooked Line

Step 1: Press down the SHIFT LOCK key. It should stay down.
Step 2: Hit E, then D, then C, then *, then F, then R.

Step 3: Hit the key.

49

Exercise 4: Two Crosses

Step 1: Press down the SHIFT LOCK key. It should stay down.
Step 2: Hit M, then SPACE, then N, then SPACE, then —.

Step 3: Hit the (ESIIN key.

Step 4: Hit SPACE, then V, then SPACE, then *, then +, then *.

Step 5: Hit the ICZMIR key.
Step 6: Hit N, then SPACE, then M, then SPACE, then —.

Step 7: Hit the [[ELGR key.

Xt

When you are finished, press SHIFT LOCK again so it pops up.

Did you wonder why the computer doesn’t say SYNTAX ERROR when you
hit RETURN? After all, you had characters on the line that weren’t
commands that the computer can understand.

The reason is that the C-264 doesn’t pay attention to the line you typed if
you hold down SHIFT when you press RETURN. If you press RETURN
without the SHIFT key, the computer tries to figure out what you mean when
you’re just drawing pictures.

So far we haven'’t talked about the graphic characters on the left side of the
keys. These graphics work just like the right side characters, except that you
hold down the @ key instead of SHIFT. There is no fc}] lock, so you
must hold it down yourself. h

You can print this set of graphics in either uppercase/graphic mode or
upper/lowercase mode.

The left side graphic characters include lines and angles used for drawing
charts and tables. For example, here’s how to underline a word:

Step 1: Move the cursor just under the word you want to underline.

Step 2: Hold down the C? key and the T key, which prints an underline
graphic. Hold these two keys down until the word is underlined.

50

Exercise 5: Half Bar

Step 1: Hold down the E key with one hand during the whole exercise.
Step 2: Hit D, then |, then |, then F.

Step 3: Hit the [EGIZR key.

Exercise 6: Wedge

Step 1: Hold down the [C] key and hit T, then Y, then U.

Step 2: Hold down the key and hit 9.

Step 3: Hold down the !c:l} key and hit |, then O, then P, then @, then
SPACE. o

Step 4: Hit the [EELP key.

Exercise 7: Window

Step 1: Hold down the @ key with one hand during the whole exercise.

Step 2: Hit A, then R, then S, then KRN .

Step 3: Hit Q.

Step 4: Let go of @ (it's OK, honest).

Step 5: Hold down and hit +.

Step 6: Let go of and hold down @ again. Don’t let go of it any
more.

Step 7: Hit W, then .

Step 8: Hit Z, then E, then X, then EGITE .

51

CHARACTER ANIMATION

Movies are really a sequence of still pictures. Each picture is a little different
from the one that came before. The projector shows each picture for a very
short time, then goes on to the next one. The scene becomes animated.

Computer animation works the same way. First the computer draws one
picture, then it changes the picture slightly. The C-264 is fast enough to
allow objects to move smoothly all around the screen in your games and

practical programs.

You can’t type fast enough to create animation. A movie is animated at a
rate of 30 pictures per second. The changes must be fast enough to fool the
eye. So you must use a program to draw a picture, wait for a split second,
then change to a new picture.

To get the program to create pictures we use the PRINT statement with the
graphic characters. The simplest type of animation involves alternating two
characters to get the effect of movement.

Exercise 8: Pulsing Ball
Type NEW and hit RETURN. Remember to hit RETURN after each line.

10
20
30
40
50
60
70

PRINT "
FOR L=1
NEXT

PRINT "
FOR L=1
NEXT

GCTO 10

Type RUN and hit)

To get a more interesting effect, you can build a small picture from several
graphic characters, then change a few of the characters while leaving others
in the same place. This gives the effect of part of an object moving.

v
O EDQ
TO 100

L v
| HowE | w"
TO 100

52

\/’/_\
[Type these keys.

Exercise 9: Jumping Jacks
Type NEW and hit RETURN. Remember to hit RETURN after each line.

N

10
20
30
40
50
60
70
80
90

PRINT
PRINT
PRINT
FOR L
PRINT
PRINT
PRINT

FOR L=1 TO 100:

- @3

M

" SPACE ¢ + SPACE "

W

M

"

W SPACE "

" N SPACE
=1 TO 100: NEXT

" 8 SPACE

" T+ [CfT "

" SPACE [CGJ G [¢f G "

GOTO 10

Type RUN and hit RETURN.

In both examples of animation so far, we’ve worked on only one area on the
screen. The next step is to move the animated figure around. The TAB

function helps when you want to move objects from the left edge.

Exercise 10: Crawling Snake
Type NEW and hit RETURN. Remember to hit RETURN after each line.

10
20
30
40
50
60
70
g0
90

PRINT " "
PRINT TAB (A) "
PRINT TAB (A) "
FOR L=1 TO 100: NEXT
PRINT " "
PRINT TAB (A+1) "
PRINT TAB (A+l) "
FOR L=1 TO 100: NEXT
GOTO 10

Type RUN and hit RETURN.

Using characters like the ball (SHIFT Q), you can play video games on the
screen. To move a ball, just erase the ball and replace it at a new position.

NEXT

C
K

I
J

53

I
J

Exercise 11: Moving Ball
Type NEW and hit RETURN. Remember to hit RETURN after each line.

10 PRINT " "

20 PRINT " SPACE 0 ",
30 FOR L=1 TO 50: NEXT

40 GOTO 20

Type RUN and hit the RETURN key. Hit the STOP key when you want the
program to stop moving the ball.

CONTROLLING COLORS

Separate colors can be put into each part of the screen. The border can be
one color, the background a different one, and each character can have its
own color. You already know how to set the character colors using the
keyboard. The COLOR command adjusts the color of the other screen areas.

Turn the border of your screen red by typing the command COLOR 4, 3 and
pressing the RETURN key. The number 4 in the command stands for the
border area, and color number 3 is red (the same number as on the key
marked RED).

Now type COLOR 0, 7 and hit RETURN. The screen background turns blue.
The number 0 stands for the background, while the 7 is blue (also the same
as the keyboard).

The first number after the word COLOR stands for the area on the screen
you want to change. Area 0 is the background, 1 is the character color, 4 is
the border. You'll learn about areas 2 and 3 when you get into multi-color
graphics later in this chapter.

Area # Area Name
0 Background
1 Character
2 multi-color 1
3 multi-color 2
4 Border

Table 3: Screen Area Numbers

54

Each color also has an adjustable brightness level, called the luminance.
You can add a number from 0O (darkest) through 7 (brightest) after the color
number to vary the color. Type COLOR 4, 3, 0 and hit RETURN. The border
becomes a dark red. Type COLOR 4, 3, 7 and the border changes to a bright
red.

Color Key# Color Color Key# Color
1 BLACK 9 ORANGE
2 WHITE 10 BROWN
3 RED 11 YELLOW-GREEN
4 CYAN 12 PINK
5 PURPLE 13 BLUE-GREEN
6 GREEN 14 LIGHT BLUE
7 BLUE 15 DARK BLUE
8 YELLOW 16 LIGHT GREEN

Table 4: Color Numbers

In short, the COLOR command looks like this:
COLOR area, color, luminance
Here is a quick program to show you all the C-264’s colors:

Exercise 12: Luminance Bars

First type NEW and hit RETURN. Don’t forget to hit RETURN after each
program line.

1¢ COLOR 0, 7, 7

20 FCR M=0 TO 7

50 FCK K=1 TC 2

40 FOR L=1 TG 16

56 PRINT " Ba "

60 READ A

70 COLCR 1, A, M
gC PRINT " ";
90 NEXT

106 FRINT

110 RESTORE

120 NEXTN,N

130 COLOR 1, 2, 4

2CC pata 7,14,4,13,6,16,11,8,10,9,3,12,5,15,2,1

Now type RUN and hit RETURN. You will see a bright blue screen with each
of the other 15 colors shown at each luminance level.

55

HIGH RESOLUTION GRAPHICS

The C-264 screen contains 25 rows of 40 characters each, or 1000 total
character positions on the screen. Each character is formed out of single
dots, with 8 rows of 8 dots each making an entire character. Your screen has
a total of 320 dots on each row, and 200 rows, or 64,000 dots all together.
The Commodore 264 lets you control every dot.

Using normal graphics, you have limited control over the individual dots. You
must use the 128 characters built into the C-264, which lets you create many
pictures. But think of how many you could create if you could control each
dot by itself!

The high resolution graphics ability of the C-264 lets you do just that. You
can use commands that let you draw and erase dots, lines, circles, and other
shapes.

There is one limit to high-res graphics. The C-264 can still only use one color
in each character position. That is, each 8 by 8 space on the screen where
characters usually go can still only have one color (aside from the
background color). You can use different colors for each different character
position, but only one color within that position.

Exercise 13: Color Clashes

Start by typing NEW and hitting RETURN. Hit the RETURN key after typing
each line. After the program is complete type RUN and hit RETURN.

10 COLOR 0,1

20 GRAPHIC 1,1

30 FOR L=2 TO 16

40 COLOR 1,L,2

50 DRAW 1,0,L*12 TO 319,L*12
60 DRAW 1,L*18,0 TO L*18,199
70 NEXT

80 FOR L=1 TO 5000:NEXT

90 COLOR 1,2,3

100 GRAPHIC O

Notice that the colors change near the intersections.

To switch from normal graphics (also called Text Mode) to high-res, just type
the command GRAPHIC 2,1 and hit RETURN. The screen goes blank and the
cursor reappears near the bottom of the screen. The C-264 divides the
screen into 2 separate sections: the top for graphics and the bottom five
lines for text. If you don’t want the bottom five lines for text, you can use the
command GRAPHIC 1,1, but you won’t be able to see any commands you

type.

56

You can switch back and forth from graphics to text using the GRAPHIC
command. The command GRAPHIC 0 switches the screen back to text,
while GRAPHIC 2 switches back to high-res without erasing the screen.
Adding ,1 after the command erases the screen.

In general, the GRAPHIC command looks like this:

GRAPHIC mode, clear this part is optional.

Mode
Number Effect
0 Text
1 High-res
2 High-res + text
3 Multi-color
4 Multi-color + text

Table 5: Graphic mode numbers

Clear
Number Effect
0 Don’t clear screen
1 Clear screen

Table 6: Clear numbers for GRAPHIC command

There is another way to clear the high-resolution screen. The command
SCNCLR will erase the screen without changing the graphic mode.

Once you use high-resolution graphics, the computer loses 10K of memory,
which is set aside for a more detailed screen. When you are through using
graphics, you can reclaim this memory by using the command GRAPHIC
CLR. In most programs it won’t make a difference, but it's a good habit to
get into.

57

POINTS, LINES, AND LABELS

Type the commands GRAPHIC 2,1: DRAW 1,0,0 and hit RETURN. Look
closely at the upper left corner of the screen. The C-264 drew a black dot
there.

In the DRAW command, the first number is either 1 (draw a dot) or O (erase a
dot). The next two numbers are for the row and column positions for the dot.
So if you wanted to draw a dot at row 17, column 20, just type DRAW 1,17,20.
To erase the same dot type DRAW 0,17,20.

The DRAW command can also draw a line between any two points. Just add
the word TO and the coordinates of the other end, like this: DRAW 1,1,1 TO
100,100. This draws a line from 1,1 to 100,100.

If you are used to drawing graphs in math, you might get a little confused at
first while using the computer. The coordinate system in the C-264 is upside
down from what you’re used to. In math the 0,0 point would be at the lower
left corner of the screen, but on the computer it is the upper left corner.
You’'ll get used to the system in the computer as you practice.

Once you have put a point or line on the screen, you can draw a line from it
to any other point like this: DRAW 1 TO 150,50. This draws a line from the
last point drawn to row 150, column 50. If your program uses a lot of DRAW
TO commands, you could position the first dot at a position on the screen
by using the LOCATE command, as in LOCATE 100,100.

The DRAW command can have several forms, such as:

COMMAND RESULT

DRAW color source, row, column POINT

DRAW color source, row, column TO row, column | LINE

DRAW color sourceTO row, column LINE FROM
LAST POINT

Table 7: Versions of the DRAW Command. Color source is 0 for background,
1 for foreground.

To erase points or lines on the screen, use the DRAW command followed by
the number 0. If you created a point with DRAW 1,1,1, you can erase it with
DRAW 0,1,1. A line created with DRAW 1,1,1 TO 100,100 is erased by DRAW
0,1,1 TO 100,100.

58

Exercise 14: Sine Curve

Type NEW and hit RETURN. Remember to hit the RETURN key after each
line, then type RUN.

10 COLOR 0,1

20 COLOR 1,2

30 GRAPHIC 1,1

40 LOCATE 0,100

50 FOR X=1 TO 319
60 Y= INT(100+ 99* SIN(X/20))
70 DRAW 1 TO X,Y
80 NEXT

90 FOR L=1 TO 5000
100 NEXT

110 GRAPHIC O

59

Exercise 15: Sine Plot

Don’t type NEW after exercise 9. Just change line 70 to:

70 DRAW 1, X, Y

This program plots the same curve using points instead of lines.

USING TEXT IN GRAPHS

Your graphs will be more attractive if you use words to label them. You can
use the CHAR command to mix text right into a high resolution drawing. For
instance, the command CHAR 1,0,5“HELLO” puts the word HELLO into the
sixth row at the left edge of the screen. The first number after the word
CHAR is either 1 (for draw) or O (for erase). The next two numbers are the
column and row where the text will appear.

Exercise 16: Sine Graph With Labels
Leave exercise 14 or 15 in the computer: don’t type NEW. Add these lines:

81 CHAR 1,0,0,"GRAPH OF": CHAR 1,0,1,"FORMULA"
82 CHAR 1,0,2,"Y=SIN(X)"
83 DRAW 1,0,1C0 TO 319,100: DRAW 1,189,0 TO 189,199

84 CHAR 1,0,12,"X-AXIS": CHAR 1,22,0,"Y"
85 CHAR 1,22,2,"A": CHAR 1,22,3,"X"
86 CHAR 1,22,4,"I": CHAR 1,22,5,"S"

GRAPH OF
FORMULA
Y=SIN (X)

60

SQUARES, CIRCLES, POLYGONS, AND PAINTING
DRAWING RECTANGLES

Using the DRAW command, you can draw pictures by plotting many dots or
lines. To draw a square, you can use the command DRAW 1,0,0 TO 100,0 TO
100,100 TO 0,100 TO 0,0.

The C-264 includes a command to make it easier to draw squares and other
rectangular shapes. The BOX command lets you pick the points of 2
opposite corners of the square. To duplicate the same box as in the above
example, just use BOX 1,0,0,100,100. The number 1 again means that you
want to draw and not erase. The next four numbers are the coordinates of
the box’s opposite corners, (0,0) at the upper-left corner and (100,100) near
the middle of the screen.

The BOX command can form any rectangle just by changing the corners.
You can even rotate the box by specifying an angle (in degrees) after the last
coordinate, like this: BOX 1,50,50,100,100,45. The box rotates 45 degrees
clockwise.

If you would like to draw a solid box instead of just the outline, you just add
a comma 1 after the angle. A solid box at the center of the screen is shown
as BOX 1,100,50,220,150,,1. Notice that you need a comma to hold the place
of the angle, even though you don’t want the box rotated.

Some typical forms of the BOX command are:

COMMAND EFFECT

BOX1, row1, column1, row2, column2 Outline

BOX1, row1, col1, row2, col2, angle Rotated

BOX1, row1, coll, row2, col2, , fill Solid box

BOXO0, row1, col1, row2, col2, angle, fill Erase area of screen

Table 8: Forms of the BOX Command

Exercise 17: Rotating Boxes

Type NEW then hit RETURN. Don’t forget to hit the RETURN key after each
line. Type RUN and hit RETURN at the end.

10 COLOR 0,1

20 COLCR 1,2

30 GRAPHIC 2,1

40 A = RND(1)* 20+ 10

50 FOR L=0 TO 359 STEP A

60 BOX 1, 100, 30, 220, 130, L
70 NEXT

80 FOR L=1 TO 2000: NEXT

90 GRAPHIC 0,1

61

Exercise 18: Colored Boxes

Type NEW then hit RETURN. Don’t forget to hit the RETURN key after each
line. Type RUN and hit RETURN at the end.

5 TRAP 60

10 GRAPHIC 2,1

20 DEF FNA(X)= INT(RND(1)* X)

30 COLOR 1, FNA(15)+1

40 BOX 1, FNA(320), FNA(160), FNA(320), FNA(160),, 1
50 GOTO 30

60 COLOR 1,2,3: GRAPHIC O

Hit RETURN and type RUN. Hold down the STOP key to end the program.

This program draws different colored squares all over the screen. You’ll
notice some parts of the screen changing when other parts near them
change. The reason for this was discussed in section 5 earlier in this
chapter.

DRAWING CIRCLES

The C-264 also has commands for drawing circles. Like the BOX command,
we can vary the shape of the circle to form an oval (also called an ellipse),
and we can rotate the oval. We can also just draw a section of the shape
(called an arc).

This command draws a circle in the center of the screen: CIRCLE
1,160,100,50. This tells the C-264 to draw a circle with its center at row 160
and column 100, with a radius of 50. This actually produces an oval, since
the dots on the screen are taller than they are wide. To change this to a real
circle you must add a separate number to tell that the height is different
from the width, like this: CIRCLE 1,160,100,50,42.

The C-264 can also draw a square, triangle or other polygon using the
CIRCLE command. Just tell the computer how many degrees to go between
points on the circle, like this: CIRCLE 1,160,100,50,42, , , ,120. This command
draws a triangle, since each side is 120 degrees. A simple formula to get the
angle for a polygon with N sides is 360/N.

62

Exercise 19: Polygons

Type NEW then hit RETURN. Don’t forget to hit the RETURN key after each
line. Type RUN and hit RETURN at the end.

10 GRAPHIC 2,1

20 INPUT"HOW MANY SIDES";A

30 IF A<2 OR A>100 THEN PRINT "DON'T BE RIDICULOUS":
GOTO 20

40 CIRCLE 1,160,80,40,33,,,,360/A

50 GOTO 20

You can choose to draw only an arc instead of a whole circle. The CIRCLE
command accepts the starting and ending angles in degrees, right after the
height number. The command CIRCLE 1,160,100,50,42,90,180 will display
only the lower right section of the circle.

To rotate an oval, add the angle of clockwise rotation after the command,
like this example: CIRCLE 1,160,100,100,20, , ,30.

The usual forms of the CIRCLE command are:

COMMAND EFFECT
CIRCLE color source, center row, center column, radius Oval
CIRCLE color source, c-row, c-col, width, height Circle/oval
CIRCLE color source, c-row, c-col, wid, ht, start, finish Arc
CIRCLE color source, c-row, c-col, width, height, , ,angle Rotate oval
CIRCLE color source, c-row, c-col, wid, ht, , , ,point angle Polygon

Table 9: Forms of the CIRCLE Command

Exercise 20: Olympics

Type NEW then hit RETURN. Don’t forget to hit the RETURN key after each
line. Type RUN and hit RETURN at the end.

10 COLOR 0,1
20 COLOR 1,2
30 GRAPHIC 2,1
40FORL=1TO5
50 Y =50
60IFL=20ORL=4THEN Y=100
70 X= L*35 + 50
80 CIRCLE 1,X,Y,50,42
90 NEXT
100 PRINT “SUPPORT THE OLYMPICS!”

63

SUPPORT THE OLYMPICS!
READY.

Exercise 21: Rotating Circles

Type NEW then hit RETURN. Don’t forget to hit the RETURN key after each
line. Type RUN and hit RETURN at the end.

16 COLCR 0,1

2C COLCR 1,z

26 GRAPHIC 1,1

4G P = RED(1)* ZG+ 16

56 FCR L=0 TO 35S% STEP A

6C CIRCLE 1, 16G, 110G, 80, 4C,,, L
70 NEXT

§C FCR L=1 TO 20660: NEXT

90 GRAFHIC 0,1

The BOX command allows you to create solid blocks instead of outlines. But

it doesn’t let you color in irregular areas on the screen. That’s where the
PAINT command comes in.

64

In the last exercise, we created the 5-ring symbol of the Olympic games. By
adding some PAINT statements to the program we can color in only the
areas between the rings.

Exercise 22: Olympic Painter
Type in the program in Exercise 20, then add these lines:

110 FOR L=0 TO 2
120 PAINT 1,120 + 35 * L, 75
130 NEXT

The PAINT command will fill in any enclosed area up to the boundaries
formed by any lines drawn on the screen. If there are no drawn lines, the
screen is filled right to the edge.

MULTI-COLOR GRAPHICS

The Commodore 264 high resolution graphics give you control over a great
many dots on the screen, but you have seen that the ability to put colors
close together is limited. Most high-res programs will probably only use one
color.

To get around this, the C-264 has an in-between graphics mode called multi-
color graphics. In multi-color graphics you can control half as many dots on
each row as in high-res because each dot is twice as wide. You get 160 dots
on each row, and you still get 200 rows.

To begin using multi-color graphics, refer to table 5 earlier in this chapter.
You will see that the multi-color screen without text is GRAPHIC 3 and the
multi-color screen with 5 lines of text is GRAPHIC 4.

Now look at table 3 on page 54, the color area table. You will see two areas
that we haven’t used yet, areas 2 and 3. These areas hold two extra colors.
You can use any of the three colors (1, the text color; 2, an extra color; and 3,
another extra color). These colors do not interfere with each other on the
screen the way the high-res colors do in exercise 13.

65

Exercise 23: Multi-color Olympics

Type NEW then hit RETURN. Don’t forget to hit the RETURN key after each
line. Type RUN and hit RETURN at the end.

10 COLOR 0,1

20 GRAPHIC 4,1

30 FOR L=1 TO 5

40 Q=L: IF Q>3 THEN Q=Q-3
50 COLOR Q,L+1

60 ¥Y=50

70 IF L=2 OR L=4 THEN Y=100
80 X= L*18 + 25

90 CIRCLE Q, X, Y, 25, 42
1060 NEXT

110 PRINT "SUPPORT THE OLYMPICS!"

Color area 3, the second of the multicolor areas, has a special ability that
none of the others has. Once you have drawn on the screen using area 3,
you can change that color everywhere it appears on the screen by using the
COLOR command. If you set the color with COLOR 3,5 and draw using that
color, your graphics will appear in purple. If you then change the color with
COLOR 3,6, all the purple areas would change to green. This doesn’t work
with any other area.

The Commodore 264 Programmer’s Reference Guide contains more
information about graphics.

Exercise 24: Neon Sign

Type NEW then hit RETURN. Don’t forget to hit the RETURN key after each
line. Type RUN and hit RETURN at the end.

10 COLOR 0,1

20 GRAPHIC 3,1

30 COLOR 3,1

40 TRAP 200

50 DRAW 3,10,10 TO 10,100: DRAW 3,10,55 TO 30,55
60 DRAW 3,30,10 TO 30,100: DRAW 3,50,10 TO 80,10
70 DRAW 3,65,1C TO 65,100: DRAW 3,50,100 TO 80,100
80 FOR L=0 TO 7

90 COLOR 3,2,L

160 FOR M=1 TC 100: NEXT

110 NEXT

120 COLOR 3,1

13C FOR M=1 TO 100: NEXT

140 GOTO 80

200 GRAPHIC 0: COLOR 1,2,7

66

CHAPTER 7

MAKING SOUND AND
MUSIC ON THE C-264

® |ntroduction
* Making some music
* The C-264 music machine

67

INTRODUCTION

Here is a short program to make music on the C-264. Just type the program
exactly as it looks, and remember to press RETURN at the end of each line.
When the program is entered, type RUN and the press RETURN. When the
program asks you to enter a number, type any number from 0 to 1023 and
press RETURN.

10 VOL7

20 DO

30 INPUTX

40 SOUND1,X,10

50 LOOP UNTIL X=0

Here’s how to play a note on the C-264. If you typed in the program at the
beginning of this chapter, press the 0 key and press RETURN to stop the
program.

Example #1:
First:

Type VOL 8 and press
Second:

Type SOUND 1,266,60 and press

You should hear a note play for about a second and then stop. If you don’t
hear anything, turn up the volume of your television or monitor and try it
again.

These two steps are the only commands that you need to know to play
music on your C-264. Let’s look at what these two commands do.

68

VOL

The VOL command controls the volume of the notes that the C-264 will play.
Think of the first three letters of the word ‘volume’ to remember the VOL
command. The number that comes after VOL is the setting for the volume.
Think of the VOL command as a volume knob on the C-264. When the knob
points to zero, the volume is off and you won’t hear anything. When the knob
points to 8, the volume is turned up all the way, and the C-264 will play as
loud as it can.

Try the first example again and use a different number after the command
VOL. As the number you choose gets smaller, the note that is played will get
quieter.

SOUND

The SOUND command tells the C-264 everything about the note you want to
play. The SOUND command has three numbers after it that describe the
note you want to play.

VOICE

The first number after the word SOUND can be a 1,2 or 3. This number
selects which of the two voices you want to use. Just like a choir has
different voices, so does the C-264. Each of the voices is a little different,
and you have to choose the one that best fits what you are trying to play.

Voice 1 — This voice plays tones. You select this with a 1 following the
SOUND command. It can go very high, and pretty low too.

Voice 2 — This voice can be used for tones or for noise. Use a 2 after the
SOUND command to select tones, and a 3 to select noise.

You can use noise to make sound effects like thunder and rain.
NOTE

The second number after the word SOUND is the note value. This can be any
number from 0 to 1023, and it tells the C-264 how low or high a note to play.
As the numbers get bigger, the notes get higher.

Noise is “white” noise only in the range 600-940. You can use register values
outside this range to create other interesting sound effects.

69

Here is a chart that shows all of the notes in one scale, along with the note
value to use. For example, if you want to play an ‘E’, you would look for ‘E’
on the chart and then read across to 854. The 854 would be the note value to
use in the SOUND command. There is a complete chart of notes for the
C-264 in Appendix G.

NOTE SOUND REGISTER VALUE ACTUAL FREQUENCY (H2)

A 770 440.4
B 798 494.9
C 810 522.7
D 834 588.7
E 854 658

F 864 699

G 881 782.2

Try putting the following program into the C-264:

NEW

10 voL. 7 mmmm————— turn on volume
20 X=0

30 DO

40 SOUND 1,X,5 = ==——-- play note
50 X=X+5

60 LOOP UNTIL X=1020

70 VOL 0 ———m————e- turn off volume
80 END

Type this program in exactly as it is shown. Don’t forget to press RETURN
after each line. When you finish typing it in, and you have checked for
mistakes, type RUN and press RETURN. The C-264 will show off how low
and high it can go and play many notes in between.

DURATION

The third number after the word SOUND is called the duration. This tells the
C-264 how long to play the note. This number can be anything from 0 to
65535. This number is a timer, except instead of ticking one number each
second, it ticks 60. A duration of 60 will keep the note on for one second.
You don’t need to understand this right now, just remember that the bigger
the number, the longer the note will stay on. In fact if you use 65535, the
note will stay on for over 16 minutes.

70

MAKING SOME MUSIC

Now that we’ve looked at the commands that the C-264 uses for making
sound, let’'s make some music. Here are a couple of programs to type:

The first program turns the keys from 1 through 8 into a piano. Type in the
program and then type RUN.

Color Piano

5 SCNCLR

6 FORX=1TOS:READN (X) :NEXT

10 VOL7

20 ©O

30 GETAS:IFAS=""THEN30

25 A=ASC(AS):IFA<C490RA>S6THENSO
36 N=A-48

40 SOUND1,N(N),5

45 COLORO,N,3

50 LOCP UNTIL A=32

55 VOLO:COLORO,2,7

100 DATAl6¢,262,345,383,453,516,571,596

Press numbers 1 through 8 to get notes. The screen even changes colors
with the different notes. When you finish playing, you can press the space
bar to stop the program.

Here are the numbers to press for a familiar song:

Twinkle, Twinkle, Little Star

o= OO0 -
= S I G B o)
WO WO
WU WU
MDY W WO
N WWN O
HONdDNDHFHO

71

Here is a program that plays a song by reading a list of DATA statements.
The DATA statements are in pairs. The first number is the note value for the
SOUND command and the second number is the duration for the SOUND
command.

Row Boat

10 VOL7
20 DO

30 READ X,Y

40 SOUNDI1,X,Y

45 SGUND1,1022,5

50 [LOOP UNTIL X=0

60 END

100 DATA169,45,169,45,169,30
110 DATA262,15,345,45,345,30
120 DATA262,15,345,30,383,15
130 DATA453,60,596,45,453,45
140 DATA245,45,169,45,453,30
150 DATA383,15,245,30,262,15
160 DATA169,60

200 DATAO,O

72

This program plays notes going up and down scales at different speeds, and
displays some color bars along with them.

10
20
30
40
50
60
70
80
90
100
110
120
130
140

Hold down CTRL and
press each color
key once. Then hold

AS="~ down [G] and press
voL7 each color key once.
DO Then type a quote.

D=INT(RND(0) *S) +2: REM DURATION
S=INT(RND(0)*300)+700 :REM START
R=INT(RND(0)*(1020-S)) :REM RANGE
P=INT (RND(0)*30)+5 :REM STEP
T=SGN(RND(1)-.5) :IFT=0THENB8O
FORZ=STOS+T*RSTEPP*T

SOUND1,2Z,D

Y=(ZAND15)+1:FORX=1TOD

PRINT"R";MIDS (AS,Y,1);" ";

NEXT: NEXT
r
LOOP -—‘———-\\~_______““(EE:§E§ CTRL and

RVS ON

73

The last program is a little longer. This is the “GREAT C-264 MUSIC
MACHINE”.

The C-264 Music Machine

5 GOSUB1000

6 FORX=1TO9:READN(X) :NEXT

8 CHAR1,8,1,"*THE GREAT MUSIC MACHINE*"
1¢ VCL7

20 DO

30 GETAS:IFAS=""THEN30

35 A=ASC(AS):IFA<K490RA>57THENS0

36 N=A-48

4C SOUND1,N(N),4

45 GSHAPENS,150,8* (6+(9-N)) ,4

46 FORZ=1TO50

47 GSHAPENS,150,8* (6+(9-M)) ,4

50 LOOP UNTIL A=32

55 VOLO:GRAPHICO:SCNCLR

6C END

100 DATA345,383,453,516,571,596,643,6385,70C4
1000 GRAPHICI,1

1010 FORY=60TC124STEP16

1020 DRAW 1,100,Y TO 200,Y

103G NEXT

1040 AS="FEDCBAGFE"

1050 FORX=1T(C9:C=12

1060 IFINT(X/2)=X/2THENC=14

1070 CHAR1,C,X+6,MIDS(AS,X,1),0

1075 CHAR1,C+10,X+6,RIGHTS (STRS(10-X),1)
1080 NEXT

1090 FORX=1TO8:FORY=11TOl16:DRAW],X,Y :NEXT:NEXT
1100 Y=1:X=8:DRAW1,8,16 TC X,Y

1110 SSHAPENS,1,1,8,160

1120 GSHAPENS,1,1,4

113C RETURHN

When you press a key from 1 through 9, the note will be played, and a note
will appear on the staff on the correct line.

As this chapter has shown, it’s not hard to write your own sound program.
The programs in this chapter just begin to show the music capabilities of
the C-264. Don’t be afraid to try new sounds and noises and create your very
own masterpiece.

74

75

CHAPTER 8

BASIC TRICKS

CONTROLLING THE SPEED OF YOUR PROGRAMS (FOR ... NEXT)

Did you ever want to SLOW DOWN a program? You can control the speed of
your program by using a special two-part command called a time delay loop.
Time delay loops use the FOR ... NEXT command to tell the computer to
pause and count to some number before continuing, slowing down your
program.

Here’s what a time delay loop looks like — you can insert a line like this
almost ANYWHERE in your program to slow it down:

FOR T =1TO500:NEXT

These two numbers can be any two
numbers. The computer will “count”
from the first number to the second,
and the larger the difference, the
longer the time delay. For example
1TO100 is a much shorter time delay
than 1TO1000.

Let’s try an example to see how it works. Type the word NEW and press the
RETURN key (to erase any previous programs), then type the following
program exactly as shown:

You can use a different variable
than T but we use T because it
helps us distinguish Time loops

from other loops in our programs.

10 PRINT* COMMODORE” | RETURN
20 PRINT* TECHNOLOGY” [RETURN |
30 GOTO10

Now type the word RUN and press the RETURN key. That’s too fast! Let's
slow it down. First, let's decide where we want the program to slow down.
After the word COMMODORE appears on the screen we want to make the
computer pause so we can read the word, so a good place to put a time
delay would be right after LINE 10 . . . at a new line numbered 15 so it fits
between Line 10 and Line 20.

We also want some time to read the second message, which is the word
TECHNOLOQGY, so let’s put a time delay after Line 20, on a new line
numbered 25 so it fits between LINE 20 and LINE 30. Type these two lines
exactly as shown (the computer will automatically insert them into your
program):

15 FOR T=1 TO 500:NEXT [RETURN |
25 FOR T=1 TO 500:NEXT

Type the word RUN and press the RETURN key. To stop your program, hold
down the RUN/STOP key. Then type the word LIST and press RETURN to
see the complete program. You’ll see FOR. . .NEXT loops used as time
delays in various programs in this manual. Remember, whenever you see the
variable T used in a FOR. . .NEXT loop in this manual, it is being used as a
time delay.

76

TIP: To make the messages flash faster, try changing the number 500 in
Lines 15 and 25 to the number 100.

AN EASY SOUND EFFECT (FOR ... NEXT ... STEP)

FOR ... NEXT ... STEP can be used creatively in sound effects. In this
program we are going to use a FOR . . . NEXT loop with a negative step, so
we can count down from a high number to a lower one.

10 VOL7

20 FOR S= 1000 TO 700 STEP — 25
30 SOUND1,5,1

40 NEXT

Type RUN and press RETURN. Hear the sound effect? The key is LINE 20,
where we used a number range from 1000 to 700 going DOWN THE SCALE.
Then we STEPped — 25 numbers at a time. Finally, in LINE 30 we played
each note very fast by setting the DURATION to 1. Experimenting with
different number and duration values can give you some very interesting
effects.

PROGRAMMING TIP:

You can make a long program shorter by combining more than one
command on a line. For example, you can write the musical sound effect
program on ONE LINE, by separating the various commands with colons (:),
like this:

10 VOL7:FOR S=1000 TO 700 STEP — 25 :SOUND1,S,1 :NEXT

What this does is create a ONE-LINE musical tone or sound effect that you
can easily insert into your BASIC programs where you want a quick musical
prompt. This technique is called “crunching” your program. Crunching
makes the program use less memory, run faster, and is the way to get the
most out of the memory capability of your computer.

77

UNDERSTANDING RANDOM NUMBERS

Take 10 pieces of paper and write a number from 1 to 10 on each piece.
Next, put the 10 pieces of paper into a hat or other container where you can’t
see them. Now, cover your eyes and draw out one piece of paper. What
number did you get? That number is a RANDOM number. Now put the
number back into the hat, mix up the papers and draw again. Each time you
draw a number, put that number back in the hat so there are always 10
pieces of paper to choose from. Keeping 10 numbers in the hat means you
always have 10 random numbers in the hat. When you take a number, you
DON'’T know what number is going to come up next, but you DO know that
the number will be between 1 and 10. This is the basis of RANDOM
NUMBERS.

In programming, random numbers usually have a RANGE. This means
there’s an UPPER LIMIT and a LOWER LIMIT to the numbers you can draw.
In our hat example, the range of number is 1 to 10. The lower limit is “1”’ and
the upper limit is “10”, which means that ANY NUMBER FROM 1 TO 10 CAN
COME UP AT RANDOM WHEN YOU DRAW.

Now let’s see how your Commodore computer handles random numbers,
and some of the fun things you can do with them. Here’s a program that
generates 5 completely RANDOM numbers:

10 FOR X = 1TO5: PRINT RND(X): NEXT

These random numbers are all rather complex, with several places on the
right side of the decimal point . . . but most uses for random numbers
require WHOLE NUMBERS. You can make your numbers come out as whole
numbers (without decimal places) by using the INTeger function, which cuts
off all the digits on the RIGHT side of the decimal point. The next section
gives you a formula for using random numbers.

78

AN EASY RANDOM NUMBER FORMULA

Here’s a simple formula for generating random numbers in any range you
want. You can use this formula almost anywhere you would use a variable or
number in your program.

INT(RANGE*RND(1))+ LOWER LIMIT

The INT command tells the computer to cut off any decimal places and only
give you whole numbers like 1, 45, or 320, instead of numbers like 1.223,
456677, or 320.59. Whole numbers are easier to work with when using
random numbers.

LOWER LIMIT in our formula means the lowest number you want the
computer to choose from.

RANGE means how many numbers are in the total group.

For example, if you want to choose a random number from 1 to 5, the
LOWER LIMIT will be 1 and the RANGE will be 5. If you want to choose a
random number from 15 to 20, the LOWER LIMIT will be 15 and the RANGE
will be 5 because you are still choosing from a total group of 5 numbers. If
you’re choosing numbers from 2 to 100, the LOWER LIMIT is 2 and the
RANGE is 98. See how it works? Let’s try out a program:

10 PRINTINT (5*RND(1)) + 1

Type RUN and press RETURN. Type RUN again . . . and again. Each time you
get a RANDOM number from 1 to 5. Now let’s PRINT 15 random numbers
with the LOWER LIMIT 1 and the RANGE 5. . . note that all 15 numbers we
choose will be selected at random from between 1 and 5:

10 FOR X=1TO15
20 PRINT INT (5*RND(1)) + 1
30 NEXT

Type RUN and press RETURN.

The easiest way to use this formula is to make it into a user defined function
as follows:

10 DEF FNR(X)= INT(X*RND(1)) + 1
This gives us random numbers in the range from 1 to X.
EXAMPLE using a defined function:

10 DEF FNR(X)= INT(X*RND(1)) + 1
20 DO

30 COLOR1,FNR(16),5

40 PRINT “THE SEARCH GOES ON”
50 LOOP

Using the defined function saves memory space when you use the function
more than once, and makes your programs easier to read.

79

GRAPHICS PROGRAM USING COLOR, GRAPHIC, SCNCLR, AND CIRCLE
This program draws a circle on your screen:

10 GRAPHIC1,1
20 COLORO0,14: COLOR1,1: COLORA4,1
30 CIRCLE1,160,100,65,50

LINE 10 sets the computer to GRAPHIC1 “high resolution” graphics and
clears the graphic screen of any previous graphics that might have been
drawn there. It’s always a good idea to clear the screen at the beginning of
any graphic picture, so the new picture doesn’t get mixed up with a previous

picture.

LINE 20 defines the COLORs we’re going to use. COLORO is the background
screen color. COLOR1 is the LINE DRAWING COLOR. COLOR4 is the
border color. The second number in each COLOR command sets the

actual color. Colors range from 1 to 16 (and are shown on Page 48). In our
example, we set the background (COLORO) to 14, which is light green. We
set the DRAWING COLOR (COLOR1) to 1, which is black, and we also set
the border (COLOR4) to 1, which is black.

LINE 30 is the CIRCLE COMMAND — here’s what the numbers mean:

Your viewing screen is divided into 320 dots (numbered\\
0-319) ACROSS the screen and 200 dots (numbered 0-99)
UP AND DOWN. Position 160, 100 means 160 dots
across from the left side, and 100 dots down from the
top. Since 160 is HALF of 320 and 100 is HALF of 200,
position 160, 100 defines the CENTER of the circle at
the CENTER OF YOUR VIEWING SCREEN.

Draw the circle
in the fore-
ground color

N
CIRCLE?1, 160, 100, 65, 50

his number defines the VERTICAL
RADIUS of the circle — the number
of dots from the center point to

the TOP and BOTTOM edges of the
circle.

This number defines the
HORIZONTAL RADIUS of the circle
— the number of dots from the

center point to the LEFT and RIGHT)
circle.

80

CONCENTRIC CIRCLES (COLOR, GRAPHIC, SCNCLR, CIRCLE)

One of the fun things you can do to impress your friends is to use your
computer’s graphic capabilities to create interesting patterns and designs.
This program creates beautiful concentric circles with exquisite optical
effects.

10 COLOR1,7,2 Drawing color(1) is blue(7), luminance is
dark (2)

20 GRAPHIC1,1 Graphic 1= high resolution

30X=1Y=1 Variables X and Y both equal 1

35 DO UNTIL Y =49 Start the loop

40 CIRCLE1,160,100,X,Y Circle1 means draw the circle in the

same color as the DRAWING COLOR,
which is blue. 160,100 tells the computer
where to put the CENTER of the circle,
which happens to be the center of the
screen. X is the horizontal radius, Y is
the vertical radius. We defined them
both as 1 in Line 30 and change them in
Line 50.

50X=X+2Y=Y+2 In Line 40 above, a small circle was
drawn with an X-Y radius of 1. Now we
increase the radius by 2 and go back and
draw a slightly larger circle, again and
again, each circle a little larger until we
have a series of concentric circles.

60 LOOP

70 GETKEY A$: GRAPHICO:END Wait for user to hit a key before going
back into text mode.

Note in Line 10 we set the line drawing color to dark blue. COLOR1 means
drawing color and 7 means set it to blue, but there’s a THIRD number here!
We didn’t show you this feature in the previous example, but if you add a
THIRD NUMBER to your COLOR command, you can designate LUMINANCE.
Luminance can be thought of as the LIGHTNESS or DARKNESS of a color.
In other words, you can set luminance levels from 0 (darkest) to 7 (brightest).
We wanted a very deep blue so we chose a luminance level of 2. Try
changing the luminance levels and see what happens to the color.

81

CIRCLE PATTERNS
Here are a couple of one line programs that show off the circle command.

10 GRAPHIC1,1:FOR T=1 TO 180 STEPS6: CIRCLE1,80,80,60,60, , ,
T,120:NEXT

and

10 GRAPHIC1,1:FOR T=1 TO 180 STEP6: CIRCLE1,80,80,60,60, , ,
120,:NEXT

PRINTING THE CURSOR IN SCREEN POSITIONING

The key to positioning a word or graphic image where you want it on the
screen . . . or even making it MOVE in animated programs . . . is using the
CHAR statement. While it is possible to do it with strings containing the
cursor movement keys, you will soon agree that the CHAR statement is
much easier to use:

10 CHAR 1,3,2,3 SPACES RIGHT, 2 SPACES DOWN”
Here’s a bit more complicated case of cursor positioning:

15 CHAR 1,0,10,10 SPACES DOWN";
20 FOR T=1TO 2000: NEXT

25 CHAR1,0,5,6 SPACES UP”;

30 FOR T=1 TO 2000: NEXT

35 CHAR 1,0,0,"HOME POSITION";

40 FOR T=1 TO 2000: NEXT

45 CHAR 1,10,0,“10 SPACES RIGHT”;
50 FOR T=1 TO 2000: NEXT

55 CHAR 1,12,12,12 DOWN, 12 LEFT”;
60 END

You can use this same technique to PRINT GRAPHIC SYMBOLS anywhere
using the keyboard graphics explained in Chapter 6.

82

CHANGING COLORS

When you turn on your C-264, the screen is BLUE and the characters on the
screen are BLACK. As the last program showed, you can change these
colors. Your C-264 has 16 colors each with 8 luminance levels (except black),
so there are a lot of different color combinations. Here’s a program that
shows you all the combinations by changing the background color to each
one.

10 DO

20FORC = 1TO 16
30FORL =0TO7

40 COLORO,C,L

50 FOR X = 1 TO 100:NEXT X
60 NEXT L:NEXT C

70 LOOP

RUN

Here’s how to change the colors to a combination you like:
1. Choose the colors you want from this list:

1 black 9 orange

2 white 10 brown

3red 11 yellow-green
4 cyan 12 pink

5 purple 13 blue-green

6 green 14 light blue

7 blue 15 dark blue

8 yellow 16 light green

You may select any of the 8 luminance levels for each of these colors.

2. To change your screen color, type this:

COLOR 0,X,Y but instead of an X, type in the number of the color you
want, and instead of Y, select the luminance you want.

For example:
10 COLOR 0,2,0
sets the background to a dark shade of grey.

3. To change the color of the characters, type this:

COLOR 1,X,Y but instead of an X, type in the number of the color you
want, and instead of Y, select the luminance you want.

For example:
10 COLOR 1,3,7
sets the characters printed to red.

83

USING THE SEMICOLON

The semicolon is very important in BASIC. Sometimes it might be the
answer to one of those sticky programming problems.

The semicolon prevents BASIC from moving the cursor to the beginning of
the next line after executing a statement. A common use is when you
CLEAR THE SCREEN.

Try this:
10 PRINT“<SHIFT> <CLR/HOME>" [RETURN |
20 PRINT“TITLE” | RETURN |

Type RUN and press RETURN. What happens? The word TITLE appears in
the upper left corner of your screen . . . but it’'s ONE LINE DOWN FROM
THE TOP! Whenever you CLEAR the screen, the next item you PRINT will
automatically appear on the second line from the top of the screen UNLESS
YOU USE A SEMICOLON.

Now, add a semicolon to the end of Line 10, like this:
10 PRINT“<SHIFT> <CLR/HOME>"; [RETURN |

Type the word LIST and press RETURN to see the new program, then type
the word RUN and press RETURN. The word TITLE appears on the TOP line!
Of course, the same technique works with a real title, and that’s one of the
semicolon’s programming uses.

You can eliminate the need for the semicolon and save yourself some
programming space if you include the CLEAR SCREEN command in
quotation marks along with the message you’re PRINTing, like this:

10 PRINT“<SHIFT> <CLR/HOME> TITLE”

This automatically PRINTs the word TITLE on the first line because the
CLEAR SCREEN command and word you want to PRINT are combined on
the same line.

84

PRINTING GRAPHICS SIDE-BY-SIDE

Let’s explore another use of the semicolon, this time with graphics. Type the
word NEW and press RETURN. We want to PRINT 40 hyphens across the
screen, to make an attractive border or dividing line between two parts of a
program we’re writing. There are two ways. One way is to type all 40 symbols in
Line 20, like this:

10 PRINT“<SHIFT> <CLR/HOME>";

20 PRINT - - - oo e e e e e e ”

Another way to do exactly the same thing is to use a FOR .. . NEXT loop,
like this:

10 PRINT“<SHIFT> <CLR/HOME>"; Type the graphic
20 FORX = 1TO40:PRINT* — ";:NEXT symbol here
30 PRINT ~

Run this program and 40 graphic lines appear across your screen. The
semicolon tells the computer to PRINT each of the 40 hyphens in the

FOR ... NEXT LOOP right NEXT TO EACH OTHER on the screen. Without
the semicolon, the hyphens would PRINT in a vertical column, each one on a
separate line. Try removing the semicolon and RUN the program. Try
substituting some of your computer’s other graphic symbols instead of the
hyphen.

COMBINING LONG PRINT MESSAGES

Using a BASIC program to PRINT a long instruction or sentence on the
screen can be difficult because each program line is limited to 80 COLUMNS
(two lines) on your screen and many messages are longer than that. Type
NEW and RETURN, then enter this program:

10 PRINT“<SHIFT> <CLRIHOME> NOW IS THE TIME TO BUY A NEW
COMMODORE DISK DRIVE AND PRINTER FOR YOUR COMM”
20 PRINT“ODORE SYSTEM”

RUN the program. Too bad — you had to continue your sentence on a
second program line (Line 20) but the lines don’t match. You can make the
two PRINT statements run together by adding a SEMICOLON at the end of
Line 10, like this:

10 PRINT“SHIFT CLR/HOME NOW IS THE TIME TO BUY A NEW _
COMMODORE DISK DRIVE AND PRINTER FOR YOUR COMM”’;
20 PRINT“ODORE SYSTEM”

Now RUN the program and you’ll see that the last part of the word
“COMMODORE” is automatically attached to the beginning of the word.

85

INPUTS WITHOUT QUESTION MARKS

Here’s a really handy programming technique — using INPUT statements
WITHOUT question marks. Traditional INPUT statements have built-in
question marks which typically appear on the NEXT LINE after the “prompt”
or question, as in this sample program:

10 PRINT“<SHIFT> <CLR/HOME> ENTER YOUR NAME”;:INPUT N$
20 PRINT“<SHIFT> <CLR/HOME> YOUR NAME IS ”"N$

In Line 10 we CLEAR the screen, PRINT a prompt message, then provide an
INPUT VARIABLE which we call N$ (the variable we chose is arbitrary; it
could just as easily be another legal string variable name like A$, XY$ or
NN$). In Line 20 we CLEAR the screen again and PRINT another message,
this time using the name that was input. Here, N$, which is the name the
user typed in, is PRINTed because N$ equals whatever the user typed in. But
what if you don’t want to use a question mark for the INPUT data? What if
you want to have the user type in a LIST OF ITEMS (like an inventory list, for
example, or some business data)? Here’s a very helpful technique:

10 OPENS,0

20 PRINT“<SHIFT><CLR/HOME> NAME:"; : INPUT#3,N$
30 PRINT CHR$(13) “YOUR NAME IS "N$

40 CLOSE3

Line 10: We open device number 0, which is the keyboard. The keyboard has a
device number just like a Datasette, disk drive or printer (the Datasette

device number is 1, the single disk device number is number 8 and the

printer is number 4). Opening the keyboard lets you get input while side-
stepping some of the built-in functions like the automatic question mark
which appears when you usually program an INPUT statement.

Line 20: Here we CLEAR the screen again and PRINT a prompt message
which is NAME: — then we provide for the INPUT of the name which we
designate N$. INPUT#3 is the same as our usual INPUT statement except we
are now INPUTTING to the screen so we add the # as shown.

Line 30: The name which was typed in (N$) is included at the end of our
simple PRINT statement.

86

USING COMMODORE BUSINESS GRAPHICS

Your Commodore computer has a full set of keyboard graphics that include
an excellent set of business graphics. These special lines and blocks let you
create a wide variety of charts and graphs. Here’s a quick lesson in how to
set up your screen using these graphics:

Hold down the
“Commodore key”
and press the

CY” key 38 times

To get this symbol
hold down the shift
key and press the
“PH key

10 PRINT”<SHIFT> <CLR/IHOME>]
20 PRINT'T<SPACE> TITLE OF YOUR CHART"”
30 FOR X =1 TO 20:PRINT*]

:NEXT

40 PRINT*HOME” SPC(241) CATEGORY 1:

50 PRINT SPC(200) CATEGORY 2:

87

MIDS$, LEFTS, RIGHTS, and INSTR

Three useful functions which are seldom explained in user’s guides are the
STRING FUNCTIONS. These functions let you define a string of characters,
letters, numbers or graphic symbols inside QUOTATION MARKS, and then

work with any part of the information contained in that string. The best way
to describe how these functions work is to give you an example:

10 SCNCLR

20 C$ = “HELLOGOODBYE”

30 PRINT LEFT$(C$,5)

40 PRINT RIGHT$(C$,7)

50 PRINT MID$(C$,4,3)

60 PRINT “GOOD STARTS IN POSITION”; INSTR(C$, " GOOD")
70 MID$(C$,4,3) = “RUG”:PRINT MID$(C$,4,3)

Type RUN and press RETURN. There are three words displayed. They all
came from the C$ string letters we defined in LINE 20.

LINE 10 CLEARs the screen.

LINE 20 defines the string variable C$ as a group of letters contained
between the quotation marks. These letters could also be numbers or
graphic symbols.

LINE 30 shows how LEFT$ works. PRINT LEFT$(C$,5) means: PRINT the first
5 characters contained in C$. The first 5 characters form the word HELLO.

LINE 40 shows how RIGHT$ works. PRINT RIGHT$(C$,7) means: PRINT the
last 7 characters contained in C$. The last 7 characters form the word
GOODBYE.

LINE 50 shows how MID$ works. PRINT MID$(C$,4,3) means: PRINT three
characters from C$, starting with the FOURTH CHARACTER FROM THE
LEFT. The fourth character is an L. PRINTing three characters from that
position displays the word LOG.

LINE 60 shows how you can use the INSTR function to search for a word in
another string.

LINE 70 shows how you can change the definition of the middle of a string
using the MID$ function.

88

A MORE COMPLEX PROGRAM (GOSUB, LEFTS)

Here’s a different construction of the program we just ran. Pay close
attention to this example because it may have applications to your own
programs:

10 PRINT“ ENTER YES OR NO AND PRESS RETURN”:VOL 7
20 INPUTAS

30 IF LEFT$(A$,1)=“Y”"THEN GOSUB 1000

40 IF LEFT$(A$,1)=“N"THEN GOSUB 2000

50 PRINT“PROGRAM WOULD CONTINUE FROM HERE . . .”
900 END

1000 PRINT“GOOD”: SOUND 1,800,40:RETURN

2000 PRINT“SORRY”: SOUND 1,200,40:RETURN

The GOSUB commands at the end of LINEs 30 and 40 tell the computer to
jump to THE SUBROUTINE contained on the lines shown. For example,
GOSUB1000 means go to Line 1000 and perform the action there. In this
case, LINE 1000 displays the message GOOD and plays the sound effect.
The RETURN command accompanies the GOSUB. Actually RETURN tells
the computer to go back to the end of the line where it came from and
continue on through the program. So if the user types a Y for yes, the
message and tone in LINE 30 are provided, then the program RETURNSs to
Line 30 and continues down through Line 40 (nobody pressed N so nothing
happens in Line 40) . . . to Line 50 where this message is displayed. The
GOSUB and RETURN features in LINE 40 work just like LINE 30.

The END command is needed between the part of the program with the
GOSUB and the LINEs containing the actual subroutine. Lines with
subroutines like those in LINEs 1000 and 2000 should always be relatively
high program line numbers so you have space to fit your program.

We can improve the program a bit. By now you shouldn’t need the detailed
explanations, so here’s the program:

10 PRINT*“ ENTER YES OR NO”:VOL 7

30 GETKEY A$: IF A$="Y”"THEN GOSUB 1000: ELSE GOSUB 2000
50 PRINT“PROGRAM WOULD CONTINUE FROM HERE . . .”

900 END

1000 PRINT“GOOD”: SOUND1,800,40: RETURN

2000 PRINT“SORRY”: SOUND1,200,40: RETURN

89

CREATING A MENU

One of the most common beginnings for programs is a menu. A menu is just
a list of options that you choose from. Here is a simple program that prints a
menu on the screen and then prompts you for your choice.

10 SCNCLR:PRINTSPC (18)"MENU"
20 PRINT" [DOWN] [DOWN] [DOWN]™
3¢ PRINT"1. MAKE A CIRCLE"
40 PRINT"2. MAKE A sounp"

50 PRINT"3. END"

60 PRINT" [DOWN] [DOWN]"

70 INPUT"CHCOSE A NUMBER (1-3)";A
80 ON A GOSUB 1000,2000,2000
90 FCRZ=1TOl000:NEXT

100 GRAPHICO,1:GOTC10

100C GRAPHICI,1

1010 CIRCLE1,160,100,50

102C RETURN

2000 voOL7

2010 SOUND1,200,6€0

2020 RETURN

3000 SCNCLR:END

Lines 10 through 60 display the title MENU and the three selections.

Line 70 prompts you for a number from 1 to 3. Line 80 uses a new command
called ON .. GOSUB. This command will GOSUB 100, 200 or 300 depending
on the value of A. It will GOSUB 100 ON A=1, GOSUB 200 ON A=2, and
GOSUB 300 ON A=3.

Line 90 makes the program wait for a little while and then go back to the
beginning.

Lines 100 through 300 make the circle, the sound, and end the program.

90

CATCHING ERRORS

This program demonstrates a very powerful tool that is built into the C-264.
This tool is called ERROR TRAPPING. This means that if an error occurs in a
program you can keep the program from crashing. Type the following
program into your computer:

20 INPUT “TYPE ANY NUMBER;A
30 PRINT “32/A="32/A

40 PRINT “THE END”

50 END

Run this program a couple of times with different numbers to be sure that it
works. Now enter a zero as the number. You get an error and the program
crashes, right? Add these lines to the program:

10 TRAP 1000
1000 IF ER=20 THEN PRINT “DO NOT ENTER ZERO!”:RESUME20
1010 PRINT ERR$(ER) ERROR IN LINE”EL

Now run the program and enter a zero. The program now traps the error
before the program can crash. Here is what the commands are:

Line 10 sets the trap and says that if an error occurs, go to line 1000.

Line 1000 checks which error occurred (IF ER = 20). If the error is DIVIDE BY
ZERO, a warning message is printed. The next command is RESUME. This
starts the program back up again. The number after the RESUME is the line
number where the program will restart.

Line 1010 prints out the error and line number of any other errors that occur.

91

COMMODORE FUNCTION KEYS

The COMMODORE FUNCTION KEYS at the top of your COMMODORE 264
keyboard are among the most useful features of your computer.

Here are just a few of the ways the COMMODORE FUNCTION KEYS can be
used:

e Software developers use these keys to define special functions that
make their software easier to use. Most COMMODORE SOFTWARE uses
these keys, including the HELP key, which gives you instructions if you
make a mistake or have a question while using a software program.

* You can use these keys to LOAD, SAVE, RUN and edit your own BASIC
programs because the keys are programmed when you turn on the
COMMODORE 264.

e Most important — you can program these keys yourself to meet your
own needs as you program.

Those three functions of the keys are explained elsewhere. But how do you
use them in your own programs? Having to check for an entire message will
bog your program down. Fortunately the answer is easy. We can reprogram
the function keys to match the function keys on the Commodore 64 and
VIC-20. (This also makes program conversions from those machines easier).

To reprogram the keys, put the following line into your program:
10 FOR K=1TO 8:KEYK, CHR$(K + 132): NEXT

That’s all there is to it. Now whenever you type a function key, it sends a
non-printing character, from 133 to 140, just like the Commodore 64. To
check for this in a program, you can use this method;

20 GETKEYAS$:IFASC(A$) = 133THENPRINT“FUNCTION KEY 1 HIT”:GOTO20
30 IFASC(A$)>133ANDASC(A$)<141THENPRINT“SOME OTHER FUNCTION
KEY HIT”

40 GOTO 20

After your program is done, you will have to redefine the keys again if you
want them to say directory, dload, etc. You can do this by hand, in a
program, or by resetting the C-264.

92

APPENDICES

93

APPENDIX A: ERROR MESSAGES

These error messages are printed by BASIC. You can also PRINT the messages through the use
of the ERR$() function.

ERROR # ERROR NAME

1
2

10

11

12

13

14

15

16

17

18

19

TOO MANY FILES
FILE OPEN

FILE NOT OPEN

FILE NOT FOUND

DEVICE NOT PRESENT
NOT INPUT FILE

NOT OUTPUT FILE

MISSING FILE NAME

ILLEGAL DEVICE NUMBER

NEXT WITHOUT FOR

SYNTAX

RETURN WITHOUT GOSUB

OUT OF DATA

ILLEGAL QUANTITY

OVERFLOW

OUT OF MEMORY

UNDEF'D STATEMENT

BAD SUBSCRIPT

REDIM’D ARRAY

:There is a limit of 10 files OPEN at one time.

:An attempt was made to open a file using the
:number of an already open file.

:The file number specified in an I/O statement must
:be opened before use.

:Either no file with that name exists (disk) or an end-
:of-tape marker was read (tape).

:The required /O device was not available.

:An attempt was made to GET or INPUT data from
:a file that was specified as output only.

:An attempt was made to send data to a file
‘that was specified as input only.

:An OPEN, LOAD, or SAVE to the disk drive
:generally requires a file name.

:An attempt was made to use a device improperly
((SAVE to the screen, etc.)

:Either loops are nested incorrectly, or there
:is a variable name in a next statement that
:doesn’t correspond with one in a FOR.

:A statement is unrecognizable by BASIC. This
:could be because of missing or extra
:parenthesis, misspelled keyword, etc.

:A RETURN statement was encountered when no
:GOSUB statement was active.

:A READ statement was encountered, but there
:is no data left unREAD.

:A number used as the argument of a function
:or statement is outside the allowable range.

:The result of a computation is larger than the
:largest number allowed (1.701411833E + 38)

:Either there is no more room for program and
:program variables, or there are too many DO,
:FOR, or GOSUB statements in effect.

:A line number was referenced that doesn’t exist
:in the program.

:The program was trying to reference an element of
:an array out of the range specified by the
:DIM statement.

:An array can only be DIMensioned once. If an
:array is referenced before that array is DIM’d, an
:automatic DIM (to 10) is performed.

94

20
21

22

23
24
25

26

27

28

29
30
31

32

33

34

35

36

DIVISION BY ZERO
ILLEGAL DIRECT

TYPE MISMATCH

STRING TOO LONG
FILE DATA
FORMULA TOO COMPLEX

CAN'T CONTINUE

UNDEF’D FUNCTION
VERIFY

LOAD
BREAK
CAN’T RESUME

LOOP NOT FOUND
LOOP WITHOUT DO
DIRECT MODE ONLY

NO GRAPHICS AREA

BAD DISK

:Division by zero is mathematically not allowed.

:INPUT or GET statements are only allowed within
:a program.

:This occurs when a number is used in place of

:a string or vice-versa.

:A string can contain up to 255 characters.

:Bad data was read from a tape file.

:Simplify the expression (break into 2 parts
:or use fewer parentheses).

:The CONT command will not work if the program
:was never RUN, there was an error, or a line
:has been edited.

:A user defined function was referenced that
:was never defined.

:The program on tape or disk does not match
:the program in memory.

:‘There was a problem loading. Try again.
:The stop key was hit to halt program execution.

:A RESUME statement was encountered when a
‘TRAP statement is not in effect.

:The program has encountered a DO statement
:and cannot find the corresponding LOOP.

:The LOOP was encountered when there was no
:DO statement active.

:This command is allowed only in direct mode,
:not from a program.

:A graphics command (DRAW, BOX, etc.) was
:encountered before the GRAPHIC command was
executed.

:An attempt failed to HEADER a diskette, either
:because the quick header method (no ID) was
:attempted on an unformatted diskette, or

:the diskette is bad.

95

DESCRIPTION OF DOS ERROR MESSAGES

Ihese entor messages are returned through the DS and DS$ reserved variables.

NOTI: I nnor message numbers less than 20 should be ignored with the exception of 01, which
gives inlonmalion about the number of files scratched with the SCRATCH command.

20: BRI AD FRROR (block header not found)
The disk controller is unable to locate the header of the requested data block. Caused by
an illegal sector number, or the header has been destroyed.

21: READ FRROR (no sync character)
The disk controller is unable to detect a sync mark on the desired track. Caused by
misalignment of the read/writer head, no diskette is present, or unformatted or improperly
scated diskette. Can also indicate a hardware failure.

22: READ ERROR (data block not present)
The disk controller has been requested to read or verify a data block that was not properly
written. This error message occurs in conjunction with the BLOCK commands and
indicates an illegal track and/or sector request.

23: READ ERROR (checksum error in data block)
This error message indicates that there is an error in one or more of the data bytes. The
data has been read into the DOS memory, but the checksum over the data is in error. This
message may also indicate grounding problems.

24: READ ERROR (byte decoding error)
The data or header has been read into the DOS memory, but a hardware error has been
created due to an invalid bit pattern in the data byte. This message may also indicate
grounding problems.

25: WRITE ERROR (write-verify error)
This message is generated if the controller detects a mismatch between the written data

and the data in the DOS memory.

26: WRITE PROTECT ON
This message is generated when the controller has been requested to write a data block
while the write protect switch is depressed. Typically, this is caused by using a diskette
with a write a protect tab over the notch.

27: READ ERROR (checksum error in header)
The controller has detected an error in the header of the requested data block. The block
has not been read into the DOS memory. This message may also indicate grounding
problems.

28: WRITE ERROR (long data block)
The controller attempts to detect the sync mark of the next header after writing a data
block. If the sync mark does not appear within a pre-determined time, the error message is
generated. The error is caused by a bad diskette format (the data extends into the next
block), or by hardware failure.

29: DISK ID MISMATCH
This message is generated when the controller has been requested to access a diskette
which has not been initialized. The message can also occur if a diskette has a bad header.

30: SYNTAX ERROR (general syntax)
The DOS cannot interpret the command sent to the command channel. Typically, this is
caused by an illegal number of file names, or patterns are illegally used. For example, two
file names may appear on the left side of the COPY command.

31: SYNTAX ERROR (invalid command)
The DOS does not recognize the command. The command must start in the first position.

96

32

33:

34:

39:

50:

51:

52:

60:

61:

62:

63:

64:

65:

66:

67:

70:

SYNTAX ERROR (invalid command)
The command sent is longer than 58 characters.

SYNTAX ERROR (invalid file name)
Pattern matching is invalidly used in the OPEN or SAVE command.

SYNTAX ERROR (no file given)
The file name was left out of a command or the DOS does not recognize it as such.
Typically, a colon () has been left out of the command.

SYNTAX ERROR (invalid command)
This error may result if the command sent to command channel (secondary address 15) is
unrecognized by the DOS.

RECORD NOT PRESENT

Result of disk reading past the last record through INPUT#, or GET# commands. This
message will also occur after positioning to a record beyond end of file in a relative file. If
the intent is to expand the file by adding the new record (with a PRINT# command), the
error message may be ignored. INPUT or GET should not be attempted after this error is
detected without first repositioning.

OVERFLOW IN RECORD

PRINT# statement exceeds record boundary. Information is truncated. Since the carriage
return which is sent as a record terminator is counted in the record size, this message will
occur if the total characters in the record (including the final carriage return) exceeds the
defined size.

FILE TOO LARGE

Record position within a relative file indicates that disk overflow will result.

WRITE FILE OPEN

This message is generated when a write file that has not been closed is being opened for
reading.

FILE NOT OPEN

This message is generated when a file is being accessed that has not been opened in the
DOS. Sometimes, in this case, a message is not generated; the request is simply ignored.
FILE NOT FOUND

The requested file does not exist on the indicated drive.

FILE EXISTS

The file name of the file being created already exists on the diskette.

FILE TYPE MISMATCH

The file type does not match the file type in the directory entry for the requested file.

NO BLOCK

This message occurs in conjunction with the B-A command. It indicates that the block to
be allocated has been previously allocated. The parameters indicate the track and sector
available with the next highest number. If the parameters are zero (0), then all blocks higher
in number are in use.

ILLEGAL TRACK AND SECTOR

The DOS has attempted to access a track or block which does not exist in the format
being used. This may indicate a problem reading the pointer to the next block.

ILLEGAL SYSTEMTORS

This special error message indicates an illegal system track or sector.

NO CHANNEL (available)

The requested channel is not available, or all channels are in use. A maximum of five
sequential files may be opened at one time to the DOS. Direct access channels may have
six opened files.

97

71:

72:

73:

74:

DIRECTORY ERROR

The BAM does not match the internal count. There is a problem in the BAM allocation or
the BAM has been overwritten in DOS memory. To correct this problem reinitialize the
diskette to restore the BAM in memory. Some active files may be terminated by the
corrective action. NOTE: BAM = Block Availability Map

DISK FULL
Either the blocks on the diskette are used or the directory is at its entry limit. DISK FULL is
sent when two blocks are available on the 1541 to allow the current file to be closed.

DOS MISMATCH (73, CBM DOS V2.6 1541)

DOS 1 and 2 are read compatible but not write compatible. Disks may be interchangeably
read with either DOS, but a disk formatted on one version cannot be written upon with the
other version because the format is different. This error is displayed whenever an attempt
is made to write upon a disk which has been formatted in a non-compatible format. (A
utility routine is available to assist in converting from one format to another.) This message
may also appear after power up.

DRIVE NOT READY
An attempt has been made to access the Floppy Disk Drive without any diskette present.

98

APPENDIX B: BASIC 3.5 COMMANDS,
STATEMENTS, AND FUNCTIONS

This manual has given you an introduction to the BASIC language, to give you a feel for
computer programming and some of the vocabulary involved. This appendix gives a complete list
of the rules (SYNTAX) of the BASIC 3.5 language, along with a concise description of each. You
are encouraged to experiment with these commands, remembering that you can’t do any
permanent damage to the C-264 just by typing in programs, and that the best way to learn
computing is by doing.

This appendix provides formats and brief explanations and examples of the BASIC 3.5 commands
and statements. It is not intended to teach BASIC. Appendix M lists tutorial books that help you
learn BASIC.

This appendix lists commands and statements in separate sections. Within the sections, the
commands and statements are listed in alphabetical order. In most cases, commands can be
used as statements in a program if you prefix them with a line number. You can use many
statements as commands by issuing them in direct mode (i.e., without line numbers).

This appendix is divided into sections according to the different types of operations in BASIC.
These include:

1. Variables and Operators: describes the different types of variables, legal variable names, and
arithmetic and logical operators.

2. Commands: describes the commands used to work with programs, edit, store, and erase
them.

3. Statements: describes the BASIC program statements used in numbered lines of programs.
4. Functions: describes the string, numeric, and print functions.

'he commands in each section are listed alphabetically for convenience. A fuller explanation of
(-264 BASIC commands is provided in the C-264 Programmer’s Reference Guide, available from
your Commodore dealer or your local bookstore.

1. VARIABLES & OPERATORS

a. VARIABLES

I'he C-264 uses three types of variables in BASIC. These are: normal numeric, integer numeric,
and string (alphanumeric) variables.

Normal numeric variables, also called floating point variables, can have any value from
(superscript) — 10 to (superscript) + 10, with up to nine digits of accuracy. When a number
becomes larger than nine digits will show, as in 10*® or 10%, the computer will display it in
scientific notation form, with the number normalized to 1 digit and eight decimal places, followed
by the letter E and the power of ten by which the number is multiplied. For example, the number
12345678901 will be displayed as 1.23456789E + 10.

Integer variables are used when the number will always be from + 32767 to — 32768, and without

{ractional parts. Integer variables require less memory space than floating point variables, but the
difference probably would not be substantial unless used in a large quantity such as an array (see
below). An integer variable would be a number like 5, 10, or — 100.

string variables are those used for character data, which may contain numbers, letters, and any
other character that the C-264 can make. An example of a string variable is “C-264".

99

VARIABLE NAMES

Variable names may consist of a single letter, a letter followed by a number, or two letters.
Variable names may be longer than 2 characters, but only the first two are significant.

An integer variable is specified by using the percent (%) sign after the variable name. String
variables have the dollar sign ($) after their names.

EXAMPLES:

Numeric Variable Names: A, A5, BZ
Integer Variable Names: A%, A5%, BZ%
String Variable Names: A$, A5$, BZ$

Arrays are lists of variables with the same name, using an extra number to specify the elements
of the array. They are defined using the DIM statement, and may contain floating point, integer, or
string variables. The array variable name is followed by a set of parentheses () enclosing the
number of the variables in the list.

EXAMPLES: A(7),BZ%(11),A$(87)

Arrays may have more than one dimension. A two dimensional array may be viewed as having
rows and columns, with the first number identifying the row and the second number in the
parentheses identifying the column.

EXAMPLES: A(7,2),BZ%(2,3,4),2%(3,2)

RESERVED VARIABLE NAMES

There are seven variable names which are reserved for use by the C-264, and may not be used for
another purpose. These are the variables DS, DS$, ER, EL, ST,Tl, and TI$. It is also illegal to use
TO,IF, and any names that contain command names within them, such as SRUN, RNEW, or
XLOAD.

ST is a status variable for input and output (except normal screen/keyboard operations). The value
of ST depends on the results of the last input/output operation. A more detailed explanation of
ST is in the C-264 Programmer’s Reference Guide, but in general, if the value of ST is 0 the
operation was successful.

Tl and TI$ are variables that relate to the real-time clock built into the C-264. The system clock is
updated every 1/60th of a second. It starts at 0 when the C-264 is turned on, and is reset only by
changing the value of TI$. The variable Tl gives you the current value of the clock in 1/60ths of a
seconds.

TI$ is a string that reads the value of the real-time clock as a 24 hours clock. The first two
characters of TI$ contain the hour, the 3rd and 4th characters are the minutes, and the 5th and
6th characters are the seconds. This variable can be set to any value (so long as all characters are
numbers), and will be automatically updated as a 24 hour clock.

EXAMPLE: TI$ = “101530” sets the clock to 10:15 and 30 seconds (AM)

The value of the clock is lost when the C-264 is turned off. It starts at zero when the C-264 is
turned back on, or when the value of the clock exceeds 235959.

The variable DS reads the disk drive command channel, and returns the current status of the
drive. To get this information in words, PRINT DS$. These status variables are used after a disk
operation, like a DLOAD or DSAVE, to find out why the red error light on the disk drive is blinking.

ER, EL, and ERRS$ are variables used in error trapping routines. They are usually only useful
within a program. ER returns the last error encountered since the program was RUN. EL is the
line where the error occurred. ERRS$ is a function which allows your program to print one of the
BASIC error messages. PRINT ERR$(ER) will print out the proper error message.

100

CONVENTIONS IN FORMATS
The following conventions are used in the formats of the BASIC commands and statements:

KEYWORDS, also called RESERVED WORDS, appear in uppercase letters. YOU MUST ENTER
THESE KEYWORDS EXACTLY AS THEY APPEAR. However, many keywords have
abbreviations that you can also use (see Appendix C).

Keywords are words that are part of the BASIC language that your computer knows.
Keywords are the central part of a command or statement. They tell the computer what kind
of action you want it to take. These words cannot be used as part of variable names.

ARGUMENTS, (also called parameters), appear in lowercase letters. Arguments are the parts
of a command or statement that you select; they complement keywords by providing specific
information about the command or statement. For example, a keyword tells the computer to
load a program, while an argument tells the computer which specific program to load and in
which drive the disk containing the program is located. Arguments include filenames,
variables, line numbers, etc.

SQUARE BRACKETS [] show OPTIONAL arguments. You select any or none of the arguments
listed, depending on your requirements.

ANGLE BRACKETS (< >) indicate that you MUST choose one of the arguments listed.

VERTICAL BAR (|) separates items in a list of arguments when your choices are limited to
those arguments listed, and you can’t use any other arguments. When the vertical bar appears
in a list enclosed in SQUARE BRACKETS, your choices are limited to the items in the list, but
you still have the option not to use any arguments.

ELLIPSIS (.. .), a sequence of three dots, means that an option or argument can be repeated
more than once.

QUOTATION MARKS (“ ") enclose character strings, filenames, and other expressions. When
arguments are enclosed in quotation marks in a format, you must include the quotation marks
in your command or statement. Quotation marks are not conventions used to describe
formats; they are required parts of a command or statement.

PARENTHESES. When arguments are enclosed in parentheses in a format, you must include
the parentheses in your command or statement. Parentheses are not conventions used to
describe formats; they are REQUIRED parts of a command or statement.

VARIABLE means any valid BASIC variable name, such as X, A$, or T%.
EXPRESSION means any valid BASIC expression, such as A+ B+ 2 or .5*(X + 3).

101

BASIC OPERATORS
The arithmetic operators include the following signs:

+ addition

— subtraction

* multiplication

/ division

* raising to a power (exponentiation)

On a line containing more than one operator, there is a set order in which operations always
occur. If several operators are used together, the computer assigns priorities as follows: First,
exponentiation. Next, multiplication and division, and last, addition and subtraction. If you want
these operations to occur in a different order, C-264 BASIC allows you to give a calculation a
higher priority by placing parentheses around it. Operations enclosed in parentheses will be
calculated before any other operation. You have to make sure that your equations have the same
number of left parentheses as right parentheses, or you will get a SYNTAX ERROR message
when your program is run.

There are also operators for equalities and inequalities, called relational operators:

= is equal to

< is less than

> is greater than

<=or=> is less than or equal to
>=or=> is greater than or equal to
<>or=>< is not equal to

Finally, there are three logical operators:

AND
OR
NOT

These are used most often to join multiple formulas in IF .. . THEN statements. When they are
used with arithmetic operators, they are evaluated last (i.e., after + and —). When used with
arithmetic operators, they are evaluated with the lowest priority (last).

EXAMPLES:

IF A=B AND C=D THEN 100 requires both A=B & C=D to be true.
IFA=B OR C=D THEN 100 allows either A=B or C=D to be true.
A=5:B=4:PRINTA=B displays a value of 0
A=5:B=4:PRINT A>B displays a value of —1

PRINT 123 AND 15:PRINT50R 7 displays 11 and 7

102

GRAPHIC STATEMENT INFORMATION

There are a few concepts that apply to all of the bit map graphics statements. First is the
concept of the Pixel Cursor (PC). The PC is similar to the cursor in text mode: it is the position
where the next dot will be drawn. The PC however, is invisible. All drawing commands use the
PC. In addition, the LOCATE command lets you reposition the PC without drawing anything.

Wherever you use X,Y coordinates in a drawing command, you can use RELATIVE coordinates
based on the current value of the PC. Merely precede your coordinates with + or —. A plus sign
before the X value moves the PC to the right. A minus sign before the X value moves the PC to
the left. Likewise, a minus sign before the Y coordinate moves the PC up, while a plus sign
moves the PC down. For example:

LOCATE + 100,— 25 moves the PC right 100 pixels and up 25.

DRAW?1, + 10,+ 10t0100,100 draw a line 10 pixels right and 10 pixels
below the current value of the PC to the absolute point 100,100.

You can also specify a distance and angle relative to the current PC by separating the two
parameters by a semicolon.

For example:

LOCATE 50;45 will move the PC from its current location
by a distance of 50 dots at an angle of 45 degrees.

2. BASIC COMMANDS
AUTO
AUTO number

Turns on the automatic line numbering feature which eases the job of entering programs by
typing the line numbers for you. As you enter each program line and press RETURN the next line
number is printed on the screen, with the cursor in position to begin typing that line. AUTO with
0 or NO ARGUMENT turns off auto line numbering, as does RUN. This statement is executable
only in direct mode.

EXAMPLE:

AUTO 10 automatically numbers line in increments of ten
AUTO 50 automatically numbers line in increments of fifty
AUTO turns OFF automatic line numbering

BACKUP

BACKUP D drive # To D drive # (ON Unit#)

This command copies all the files on a diskette to another diskette. You can copy onto a new
diskette without first using the HEADER command to format the new diskette because BACKUP
also formats diskettes. You should always backup disks in case the original is lost or damaged.

This command can only be used with dual disk drives.

NOTE: Because the BACKUP command also headers diskettes, it destroys any information
already stored on the diskette onto which you are copying information. Therefore, be careful
when you use this command. If you're copying onto an old diskette, make sure it doesn’t contain
any programs you wish to keep. See also the COPY command.

Examples:
BACKUP DO TO D1 Copies all the files from the disk in drive 0 to the disk in drive 1.
BACKUP DO TO D1, ON U9 Copies all files from drive 0 to drive 1 in disk drive unit 9.

NOTE: After you issue a BACKUP command, the computer asks ARE YOU SURE? Type Y and
press RETURN to execute the BACKUP. Press any other key and RETURN to cancel this
command.

103

CONT (Continue)

This command is used to re-start the execution of a program that has been stopped by either
using the STOP key, a STOP statement, or an END statement within the program. The program
will resume execution where it left off. CONT will not work if you have changed or added lines of
the program (or even just moved the cursor to a program line and hit RETURN without changing
anything), if the program stopped due to an error, or if you caused an error before trying to re-
start the program. The error message in this case is CAN'T CONTINUE ERROR.

DELETE
DELETE — line number —
Deletes lines of BASIC text. This command is executable only in DIRECT mode.

EXAMPLES:

DELETE 75 Deletes line 75.

DELETE 10 — 50 Deletes lines 10 through 50 inclusive.

DELETE — 50 Deletes all lines from the beginning of the program up to and
including line 50.

DELETE 75— Deletes all lines from 75 on to the end of the program.

DIRECTORY

DIRECTORY [Ddrive#[,Uunit#[,‘pattern”]])

Displays a disk directory on the C-264 screen. Use CTRL-S to pause the display. Use the @ key
(the Commodore key) to slow it down. The DIRECTORY command cannot be used to print a hard
copy. You must load the disk directory, destroying the program currently in memory, to do that.

EXAMPLES:

DIRECTORY List all files on the disk.

DIRECTORY U9,“AB*" List all files on disk drive unit 9 (8 is the default) starting with the
letters AB.

DIRECTORY DO, The ? is a wildcard that matches any single character in that

“FILE?.BAK” character position.

NOTE: TO PRINT A COPY ON PAPER USE THE FOLLOWING:
LOAD*$0”,8:0PEN4,4:CMD4:LIST:PRINT#4:CLOSE 4

DLOAD

DLOAD “filename” [,Ddrive#[,Uunit#]]

This command loads a program from disk into current memory. (Use LOAD to load programs on
tape.) You must supply a program name.

EXAMPLES:
DLOAD “BANKRECS” Searches the disk for the program BANKRECS and LOADs it.
DLOAD (A%) LOADs a program from disk whose name is in the variable A$. You

will get an error if A$ is empty.

The DLOAD command can be used within a BASIC program to find and RUN another program on
disk. This is called chaining.

104

DSAVE
DSAVE “filename” [,Ddrive#[,Uunit#]]

This command stores a program on disk. (Use SAVE to store programs on tape.) You must supply
a program name.

EXAMPLES:
DSAVE “BANKRECS” SAVEs the program BANKRECS to disk.
DSAVE (A$) SAVEs to disk a program whose name is in the variable A$.

DSAVE “PROG 3”,DO,U9 Saves the program PROG 3 to the disk drive with a unit number
(Serial bus address) of 9.

HEADER
HEADER “diskname” [,lid code [,Ddrive#{,ON Unit#]]]

Before you can use a diskette for the first time you must format it with the HEADER command. If
you want to erase an entire diskette for reuse, you can use the HEADER command. This
command divides the disk into sections called blocks, and it creates a table of contents, called a
directory or catalog, on the disk. The diskname can be any name up to 16 characters long. The id
number is any 2 characters. Give each disk a unique id number. Be careful when you HEADER a
disk because the HEADER command erases all stored data. Giving no ID number allows you to
perform a quick header. The old id will be used. You can only use the quick header method if the
disk was previously formatted, since the quick header only clears out the directory rather than
formatting the disk.

EXAMPLES:
HEADER “MYDISK”,123
HEADER “RECS”,IR5,U8,D1

HELP

The HELP command is used after you get an error in your program. When you type HELP, the
line where the error occurred is listed, with the portion containing the error displayed in reverse
video.

KEY
KEY [key no., string]

There are eight function keys available to the user on the C-264 computer: four unshifted and four
shifted. C-264 allows you to define what each key will do when it is pressed.

KEY without any parameter specified will give a listing displaying all the KEY assignments. The
data you assign to a key will be typed out when that function key is pressed. The maximum
length for all the definitions together is 128 characters. Entire commands or a series of
commands can be assigned to a key. For example:

KEY 7, “GRAPHICO” + CHR$(13) + “LIST” + CHR$(13)

will cause the computer to select text mode and list your program whenever the ‘F7’ key is
depressed (in direct mode). The CHR$(13) is the ASCII character for RETURN. Use CHR$(34) to
incorporate a double quote into a KEY string.

The keys may be redefined in a program. For example:
10 KEY2,“TESTING” + CHR$(34):KEY3,“NO”

10 FORK =1 TO 8:KEY K, CHR$(K + 132):NEXT define the function keys like the Commodore 64
and VIC-20.

To restore all function keys to their default values, reset the C-264 by turning it off and on, or
press the RESET button.

105

LIST
LIST [1st line] [[last line]]

The LIST command lets you look at lines of a BASIC program that have been typed or LOADed
into the C-264’s memory. When used alone without any numbers following it, you will see a
complete listing of the program on your screen (which may be slowed down by holding down the

C‘| key, paused by CTRL — S, or STOPped by hitting the key marked RUN STOP). If you follow
the word LIST with a line number, the C-264 will only show you that line number. If you type LIST
with 2 numbers separated by a dash, the C-264 will show all lines from the first to the second line
number. If you type LIST followed by a number and just a dash, it will show all the lines from that
number to the end of the program. And if you type LIST, a dash, and then a number, you will get
all the lines from the beginning to that line number. Using these variations, you can examine any
portion of a program, or bring lines to the screen for modification.

EXAMPLES:

LIST Shows entire program.

LIST 100— Shows only from line 100 until the end.

LIST 10 Shows only line 10.

LIST—100 Shows lines from the beginning until line 100.
LIST 10—200 Shows lines from 10 to 200, inclusive.

LOAD

LOAD [“filename”[,device#[,relocate flag]]]

This is the command to use when you want to use a program stored on cassette tape or on disk.
If you type just LOAD and hit the RETURN key, the C-264 will blank the screen. You can rewind
the tape at this point if you need to. Then press play. The C-264 will now start looking for a
program on the tape. When it finds one, the C-264 will print FOUND filename. You can hit the

[CE] key to load, or the spacebar to keep searching on the tape. Once the program is loaded, you
can RUN, LIST, or change it.

You can also type the word LOAD followed by a program name (which is most often a name in
quotes (“ ").) The name may be followed by a comma (outside of the quotes) and a number (or
numeric variable) which acts as a device number to determine where the program is stored (disk
or tape). If there is no number given, the C-264 assumes device 1, which is the cassette tape
recorder.

The other device commonly used with the LOAD command is usually the disk drive, which is
device #8.

EXAMPLES:

LOAD Reads in the next program on tape.

LOAD “HELLO” Searches tape for a program called HELLO, and LOADS if found.
LOAD A$ Looks for a program whose name is in the variable A$.

LOAD “HELLO”,8 Looks for the program called HELLO on the disk drive.

The LOAD command can be used within a BASIC program to find and RUN another program on
disk or tape. This is called chaining.

A RELOCATE FLAG of 0 tells the C-264 whether to load the program at the start of the BASIC
program area and a flag of 1 tells where it was SAVEd from. This is generally only important to a
machine language program.

106

NEW
NEW

I'his command erases the entire program in memory and clears out any variables that may have
heen used. Unless the program was stored somewhere, it is lost until you type it in again. BE
CAREFUL when you use this command!

Ihe NEW command can also be used as a statement in a BASIC program. When the C-264 gets
lo this line, the program is erased and everything stops. This is not especially useful under
normal circumstances.

RENUMBER

1RENUMBER new starting line,increment,old starting line

Ihe new starting line is the number of the first line in the program after renumbering. It defaults
10 10.

Ihe increment is the spacing between line numbers, i.e. 10,20,30 etc. It also defaults to 10.

I he old starting line number is the line number in the program where renumbering is to begin.
I'his allows you to renumber a portion of your program. It defaults to the first line of your
program.

I'his command can only be executed from direct mode.

I XAMPLES:

RENUMBER 20, 20, 1 Starting at line 1, renumbers the program. Line 1 becomes line 20,
and other lines are numbered in increments of 20.

RENUMBER, , 65 Starting at line 65, renumbers in increments of 10. Line 65 becomes

line 10.

Before you issue a RENUMBER command, be sure all line numbers are defined, the range of
numbers is valid, and there is enough memory. It's a good idea to save your program before
RENUMBERIng in case an error occurs.

RUN
RUN [line number]

Once a program has been typed into memory of LOADed, the RUN command makes it start
working. RUN clears all variables in the program before starting program execution. If there is no
number following the command RUN, the computer will start with the lowest numbered program
line. If there is a number following the RUN command execution starts at that line. RUN may be
used within a program.

EXAMPLES:
RUN Starts program working from lowest line number.
RUN 100 Starts program at line 100.

107

SAVE
SAVE"filename”[,device#[,EOT Flag]]

This command will store a program currently in memory on a cassette tape or dish 1 you just
type the word SAVE and hit RETURN, the C-264 will attempt to store the progriium on cassette
tape. It has no way of checking if there is already a program at that spot, so0 be careful with your
tapes. If you type the SAVE command followed by a name in quotes or a string variable name, the
C-264 will give the program that name, so it may be more easily located and 1ctneved in the
future. If you want to specify a device number for the SAVE, follow the name by a comma (after
the quotes) and a number or numeric variable. Device number 1 is the tape diive, and 8 is the
disk. After the number on a tape command, there can be a comma and a sccond number, which
is either O or 1. If the second number is 1, the C-264 will put an END-OF-TAPE marker after your
program. If you are trying to LOAD a program and the C-264 finds one of these markers, you will
get a FILE NOT FOUND ERROR.

EXAMPLE:

SAVE Stores program to tape without a name.

SAVE “HELLO"”,8 Stores on disk with the name HELLO.

SAVE A$ Stores on tape with name in variable A$

SAVE “0:HELLO”,8 Stores on disk with name HELLO

SAVE “HELLO"1,2 Stores on tape with name HELLO and follows and END- OF- TAPE

marker after the program.

SCRATCH
SCRATCH “file name” ,Ddrive number ,Uunit number

Deletes a file from the disk directory. As a precaution, you will be asked “Are you sure” before
the C-264 completes the operation. Type a Y to do the SCRATCH. Type an N to cancel the
operation.

VERIFY
VERIFY “filename” ,device# ,relocate flag

This command causes the C-264 to check the program on tape or disk against the one in
memory. This is proof that the program you just SAVEA is really saved, in case your tape is bad
or something isn’t working. This command is also very useful for positioning a tape so that C-264
will write after the last program on the tape. All you do is tell the C-264 to VERIFY the name of
the last program on the tape. It will do so, and tell you that the programs don’t match (which you
already knew). Now the tape is where you want it, and you can store the next program without
any fear of erasing an old one.

VERIFY without anything after the command causes the C-264 to check the next program on
tape, regardless of its name, against the program now in memory. VERIFY followed by a program
name (in quotes) or a string variable will search the tape for that program and then check. VERIFY
followed by a name and a comma and a number will check the program on the device with that
number (1 for tape, 8 for disk). The relocate flag is the same as in the LOAD command.

EXAMPLE:

VERIFY Checks the next program on the tape.
VERIFY “HELLO” Searches for HELLO, checks against memory.
VERIFY “HELLO",8,1 Searches for HELLO on disk, then checks.

108

3. BASIC STATEMENTS

BOX

BOX][cs,] a1,b1, a2,b2 [, angle] [,paint]

CS .t Color source (0-3)(default is 1, foreground)

albl Corner coordinate (scaled)

a2b2 ... Corner opposite al1,b1 (scaled) (default is the PC)
angle Rotation in clockwise degrees (default is 0 degrees)
paintQor1) Paint shape with color (default is 0, no painting)

This command allows you to draw a rectangle of any size anywhere on the screen. Rotation will
be about the center of the rectangle. The Pixel Cursor (PC) is left at a2,b2 after the BOX
statement is executed.

EXAMPLES:

BOX 1, 10,10, 60,60 Draws the outline of a rectangle.
BOX, 10,10, 60,60, 45,1 Draws a filled, rotated box (i.e., a diamond).
BOX, 30,90,,45,1 Draws a filled, rotated polygon.
CHAR

CHAR [color sourcet#],x,y ,string[,reverse flag]
colorsource.............. 0 - 3 (default is 1)

X e Character column (0 - 39)

Y e Character row (0 - 24)

string Ll String to print

TeVerse Reverse field flag (0 = off, 1 = on)

Text (alphanumeric strings) can be displayed on the screen at a given location by the CHAR
command. Character data is read from C-264 character ROM area. You supply the x and y
coordinates of the starting position and the text string you want to display. Color source and
reverse imaging are optional.

The string is continued on the next line if it attempts to print past the right edge of the screen.
When used in TEXT mode, the string printed by the CHAR command works just like a PRINT
string, including reverse field, cursors, flash on/off, etc. These control functions inside the string
do not work when the CHAR command is used to display text in GRAPHIC mode.

NOTE: To display foreground color in multi-color mode 1 background, use color source = 0 and
reverse flag = 0. To display foreground in multi-color 2, use color source = 0 and reverse flag =
1.

109

CIRCLE
CIRCLE {[cs][,a,b,1,xr[,[yrl[,[sa]l,[eal[,[angle][,inc]]]]]

CS it Color source (0 - 3)(default is 1)

ab ... Center coordinate (scaled) (defaults to the Pixel Cursor PC)
D X radius (scaled)

Yl e Y radius (default is xr)

S8 i Starting arc angle (default 0)

€. . Ending arc angle (default 360)

angle, Rotation in clockwise degrees (default is 0 degrees)

iNC Degrees between segments (default is 2 degrees)

With the CIRCLE command you can draw a circle, ellipse, arc, triangle or an octagon. The final
coordinate will be on the circumference of the circle at the ending arc angle. Any rotation will be
about the center. Note that setting the Y radius equal to the X radius will not draw a circle since
the X and Y coordinates are scaled differently. Arcs are drawn from the starting angle clockwise
to the ending angle. The segment increment controls the coarseness of the shape and hence the
speed at which it is drawn. The increment value should be chosen so that it is a modulus of the
arc length.

EXAMPLES:
CIRCLE , 160,100,65,10 Draws an ellipse.
CIRCLE , 160,100,65,50 Draws a circle.

CIRCLE , 60,40,20,18,,,,45 Draws an octagon.
CIRCLE , 260,40,20,,,,,90 Draws a diamond.
CIRCLE , 60,140,20,18,,,,120 Draws a triangle.

CLOSE

CLOSE file number

This command completes and closes any files used by OPEN statements. The number following
the word CLOSE is the file number to be closed.

EXAMPLE:
CLOSE 2 Logical file 2 is closed.

CLR
CLR

This command will erase any variables in memory, but leaves the program itself intact. This
command is automatically executed when a RUN or NEW command is given, or when any editing
is performed.

CMD

CMD filenumber],print list]

CMD sends the output which normally would go to the screen (i.e., PRINT statement, LISTS, but
not POKEs into the screen) to another device instead. This could be a printer, or a data file on
tape or disk. This device or file must be OPENed first. The CMD command must be followed by a
number or numeric variable referring to the file.

EXAMPLES:

OPEN 14 OPEN device #4, which is the printer.

CMD 1 All normal output now goes to the printer.

LIST The LISTing goes to the printer, not the screen — even the word
READY.

PRINT#1 Set output back to the screen.

CLOSE 1 Close the file.

110

COLLECT
COLLECT [Ddrive#][,U unit#]

Use this command to free up space allocated to improperly closed files and delete references to
these files from the directory.

EXAMPLE:
COLLECT DO

COLOR
COLOR source#, color# ,luminance#
Assigns a color to one of the 5 color sources:

Number Source

0 background
1 foreground
2 multicolor 1
3 multicolor 2
4 border

Colors you can use are in the range 1 - 16 (BLACK, WHITE . .). As an option, you can include the
luminance level 0 - 7, with 0 being lowest and 7 being highest. Luminance defaults to 7.

COPY
COPY [Ddrive#,] “source file” TO [Ddrive#,]*other file”[,Uunit#]

COPYs a file on the disk in one drive to the disk in the other on a dual disk drive only, or creates
a copy of a file on the same drive (with a different file name).

COPY DO, “TEST” to D1, “TEST PROG” Copies TEST from drive 0 to
drive 1, naming it TEST
PROG only on drive 1.

COPY DO, “STUFF” to D1, “STUFF” Copies STUFF from drive 0
to drive 1

COPY DO to D1 Copies all files on drive 0 to
drive 1.

COPY “WORK.PROG” TO “BACKUP” Copies WORK.PROG. as a

program called BACKUP on
the same drive.

DATA

DATA list of constants

This statement is followed by a list of items to be used by READ statements. The items may be
numbers or words, and are separated by commas. Words need not be inside of quotes unless
they contain any of the following characters: SPACE, colon, or comma. If two commas have
nothing between them, the value will be READ as a zero for a number, or an empty string. Also
see the RESTORE statement, which allows the C-264 to reread data.

EXAMPLE:
DATA 100,200,FRED,“"HELLO,MOM”,3,14 ABC123

111

DEF FN (Define Function)
DEF FN name (variable) = expression

This command allows you to define a complex calculation as a function. In the case of a long
formula that is used several times within a program, this can save a lot of space.

The name you give the function will be the letters FN and any legal numeric variable name. First
you must define the function by using the statement DEF followed by the name you have given
the function. Following the name is a set of parentheses () with a numeric variable (in this case
X) enclosed. Then you have an equal sign, followed by the formula you want to define. You can
“call” the formula, substituting any number for X, using the format shown in line 20 of the
example below:

EXAMPLE:

10 DEF FNA(X) = 12*(34.75— X/.3)+ X
The number 7 is inserted each place

20 PRINT FNA(7) X is located in the formula given in the DEF
statement.

DIM
DIM variable (subscripts) [,variable(subscripts) . . .]

Before you can use an array of variables, unless you want 11 or fewer elements in the array, the
program must first execute a DIM statement for that array. The statement DIM is followed by the
name of the array, which may be any legal variable name. Then, enclosed in parentheses, you put
the number (or numeric variable) of elements in each dimension. An array with more than one
dimension is called a matrix. You may use any number of dimensions, but keep in mind that the
whole list of variables you are creating takes up lots of room, and it is easy to run out of memory
if you get carried away. To figure the number of variables created with each DIM, multiply the
total number of elements in each dimension of the array. (Each array starts with element 0.)

EXAMPLE:
10 DIM A$(40),B7(15),CC%(4,4,4)

You can dimension more than one array in a DIM statement by separating the arrays by commas.
Be careful not to let the program execute a DIM statement for any array more than once, or you'll

get an error message. It is good programming practice to place DIM statements near the
beginning of the program.

112

DO/LOOP/WHILE/UNTIUEXIT

DO [UNTIL boolean argument | WHILE boolean argument]
[Statements]

[EXIT]

LOOP [UNTIL boolean argument | WHILE boolean argument]

Performs the statements between the DO statement and the LOOP statement. If no UNTIL or
WHILE modifies either the DO or the LOOP statement, execution of the intervening statements
continues indefinitely. If an EXIT statement is encountered in the body of a DO loop, execution is
transferred to the first statement following the LOOP statement. DO loops may be nested,
following the rules defined for FOR-NEXT loops.

If the UNTIL parameter is used, the program will continue looping until the boolean argument is
satisfied (becomes TRUE). The WHILE parameter is basically the opposite of the UNTIL
parameter: the program continues looping as long as the boolean argument is TRUE. An example
of a boolean argument is A=1 or G>=65.

EXAMPLE:
DO UNTILX=00OR X=1

LoOoP
DO WHILE A$ =" ":GET A$:LOOP

DRAW
DRAW [color source#][, a1, b1} [TO a2, b2 . . .]

With this command you can draw individual dots, lines, and shapes. You supply color source
(0-3), starting (a1, b1) and ending points (a2, b2).

EXAMPLES:
a dot: DRAW 1, 100, 50
lines: DRAW , 10,10 TO 100,60
DRAW , TO 25,30
a shape: DRAW, 10,10 TO 10,60 TO 100,60 TO 10,10
END

When the program finds an END statement, the program stops RUNning immediately. The CONT
command can continue the program at the statement following the END statement.

113

FOR...TO...STEP
FOR variable = start value TO end value [STEP increment]

This statement works with the NEXT statement to set up a section of the program that repeats
for a set number of times.

The loop variable is a variable which will be added to or subtracted from during the program. The
start of count and end of court are the limits to the value of the loop variable.

The logic of the FOR statement is as follows. First, the loop variable is set to the start of count
value. The end of count value is saved for later reference by the C-264. When the program
reaches a line with the command NEXT, it adds the STEP increment (default = 1) to the value of
the loop variable and checks to see if it is higher than the end of loop value. If it is not higher, the
next line executed is the statement immediately following the FOR statement. If the loop variable
is larger than the end of loop number, then the next statement executed will be the one following
the NEXT statement. Also see the NEXT statement.

EXAMPLE:

10 FORL = 1TO 10

20 PRINT L

30 NEXT L

40 PRINT “PM DONE! L ="L

This program will print the numbers from one to ten on the screen, followed by the message I'M
DONE!'L = 11.

The end of loop value may be followed by the word STEP and another number or varible. In this
case, the value following the STEP is added each time instead of one. This allows you to count
backwards, by fractions, or any way necessary.

You can set up loops inside one another. This is known as nesting loops. You must be careful to
nest loops so that the last loop to start is the first one to end.

EXAMPLE OF NESTED LOOPS:

10FORL = 1TO 100

This FOR ... NEXT loop is “nested”
20 FORA = 5TO 11 STEP 2 inside the larger one.
30 NEXT A

40 NEXT L

GET
GET variable list

The GET statement is a way to get data from the keyboard one character at a time. When the
GET is executed, the character that was typed is received. If no character was typed, then a null
(empty) character is returned, and the program continues without waiting for a key. There is no
need to hit the RETURN key, and in fact the RETURN key can be received with a GET.

The word GET is followed by a variable name, usually a string variable. If a numeric variable is
used and any key other than a number was hit, the program would stop with an error message.
The GET statement may also be put into a loop, checking for an empty result, which will wait for
a key to be struck.

This command can only be executed within a program.

EXAMPLE:

This line wait
10 GET ASIF A$ = “* THEN 10 ine waits for a key to be struck.

Typing any key will continue the program.

114

GETKEY
GETKEY variable list

The GETKEY statement is very similar to the GET statement. Unlike the GET statement, GETKEY
waits for the user to type a character on the keyboard.

This command can only be executed within a program.

EXAMPLE:

10 GETKEY A$ This line waits for a key to be struck.
Typing any key will continue the program.

GET#

GET# file number,variable list

Used with a previously OPENed device or file to input one character at a time. Otherwise, it works
like the GET statement.

This command can only be executed within a program.
EXAMPLE:
GET#1,A$

GOSuB
GOSUB line number

This statement is like the GOTO statement, except that the TED remembers where it came from.
When a line with a RETURN statement is encountered, the program jumps back to the statement
immediately following the GOSUB. The target of a GOSUB statement is called a subroutine. A
subroutine is useful if there is a routine in your program that can be used by several different
portions of the program. Instead of duplicating the section of program over and over, you can set
it up as a subroutine, and GOSUB to it from the different parts of the program. Also see the
RETURN statement.

EXAMPLE:
20 GOSUB 800

eans go to the subroutine
beginning at line 800 and execute it.

800 PRINT "“HI THERE":RETURN

GOTO orGOTO
GOTO line number

After a GOTO statement is executed, the next line to be executed will be the one with the line
number following the word GOTO. When used in direct mode, GOTO line number allows you to
start execution of the program at the given line number without clearing the variables.
EXAMPLE:

10 PRINT*COMMODORE" The GOTO in line 20 makes line 10 repeat continuously until
you press RUN/STOP.
20 GOTO 10

115

GRAPHIC
GRAPHIC <mode [,clear option] | CLR>
This statement puts the C-264 in one of its 5 graphic modes:

mode description
0 normal text
1 high-resolution graphics
2 high-resolution graphics, split screen
3 multicolor graphics
4 multicolor graphics, split screen

When executed, GRAPHIC 1 - 4 allocates a 10K bit-mapped area, and the start of the BASIC text
area is moved above the HI-RES area. This area remains allocated even if the user returns to TEXT
mode (GRAPHIC 0). If a second argument is given in the GRAPHIC command, and if that
argument equals 1, the requested screen is also cleared. Executing a GRAPHIC CLR command
de-allocated the 10K bit-mapped area, and makes it available once again for BASIC text and
variables.

IF...THEN... ELSE
IF expression THEN then-clause [:ELSE else-clause]

IF ... THEN lets the computer analyze a BASIC expression preceded by IF and take one of two
possible courses of action. If the expression is true, the statement following THEN is executed.
This expression may be any BASIC statement. If the expression is false, the program goes
directly to the next line, unless an ELSE clause is present. The expression being evaluated may
be a variable or formula, in which case it is considered true if nonzero, and faise if zero. In most
cases, there is an expression involving relational operators (=, <, >, <=, >=, <>, AND, OR,
NOT).

The ELSE clause, if present, must be in the same line as the IF-THEN part. When an ELSE clause
is present, it is executed when the THEN clause isn’t executed. In other words, the ELSE clause
executes when the IF expression is FALSE.

EXAMPLE:

50 IF X>0 THEN PRINT “OK™:ELSE END Checks the valve of X. If X is greater than O,
the THEN clause is executed, and the ELSE
clause isn’t. If X is less than 0, the ELSE clause
is executed and the THEN clause isn’t.

INPUT

INPUT [prompt string;] variable list

The INPUT statement allows the computer to get data into a variable from the person running the
program. The program will stop, print a question mark (?) on the screen, and wait for the person
to type the answer and hit the RETURN key.

The work INPUT is followed by a variable name or list of variable names separated by commas.
There may be a message inside of quotes before the list of variables to be input. If this message
(called a prompt) is present, there must be a semicolon (;) after the last quote of the prompt.
When more than one variable is to be INPUT, they should be separated by commas when typed
in. If you press the RETURN key without INPUTting a valve, the INPUT variable retains the
previous valve. This statement can only be executed within a program.

EXAMPLE:

10 INPUT“PLEASE TYPE A NUMBER";A
20 INPUT “AND YOUR NAME";A$
30 INPUT B$

116

INPUT#
INPUT# filenumber, variable list

This works like INPUT, but takes the data from a previously OPENed file or device. No prompt
string is allowed. This command can only be used in program mode.

LET
[LET] variable = expression

The word LET itself is hardly ever used in programs, since it is optional. The variable name which
is to get the value or the result of a calculation is on the left side of the equal sign, and the
number or formula is on the right side.

EXAMPLE:

10LETA =5
20B =6
30C=AB+3
40 D$ = “HELLO”

LOCATE
LOCATE x-coordinate, y-coordinate

The LOCATE command lets you put the pixel cursor (PC) anywhere on the screen. The PC is the
current location of the starting point of the next drawing. Unlike the regular cursor, you can't see
the PC, but you can move it with the LOCATE command. For example:

LOCATE 160, 100

positions the PC in the center of the high resolution screen. You won’t see anything until you
actually draw something. You can find out where the PC is at any time by using the RDOT(0)
function to get the X-coordinate and RDOT(1) to get the Y-coordinate. The source of color of the
dot at the PC can be found from the value of RDOT(2). In all drawing commands where a color
option is present, you may select a value from 0 to 3, corresponding to the background,
foreground, multicolor 1, or multicolor 2 as the source of the color.

MONITOR
MONITOR

This command takes you out of BASIC into the built-in machine language monitor program. The
monitor is used to develop, debug, and execute machine language programs more easily than
from BASIC. See the section on monitor commands for more information. (When in the monitor,
typing an X and hitting RETURN will get you back to BASIC.)

NEXT
NEXT [variable, . . . ,variable]

The NEXT statement is always used in conjunction with the FOR statement. When the program
gets up to a NEXT statement, it goes back to the FOR statement and checks the loop. (See FOR
statement for more detail.) If the loop is finished, execution proceeds with the statement after the
NEXT statement. The word NEXT may be followed by a variable name, or a list of variable names,
separated by commas. If there are no names listed, the last loop started is the one being
completed. If the variables are given, they are completed in order from left to right.

EXAMPLE:

10 FORL = 1TO 10:NEXT
20 FORL = 1 TO 10:NEXT L
30 FORL = 1 TO10:FORM = 1TO10: NEXT M,L

117

ON
ON expression <GOTO|GOSUB> line numbers

This command can make the GOTO and GOSUB commands into special versions of the IF
statement. The word ON is followed by an arithmetic expression, which is evaluated into a
number. The word GOTO or GOSUB is followed by a list of line numbers separated by commas. If
the result of the calculation is 1, the first line in the list is executed. If the result is 2, the second
line number is executed, and so on. If the result is 0 or larger than the list of line numbers, the
next line executed will be the statement following the ON statements. If the number is negative,
an illegal quantity error will result.

EXAMPLE:

10 INPUT X:IF X<0 THEN 10 When X = 1, ON sends control to the first line number in the list
20 ON X GOTO 10,50,50,70 (10). When X = 2, ON sends control to the second line (30), etc.
30 PRINT “TOO HIGH”: GOTO10

50 PRINT “TOO LOW”

70 END

OPEN
OPEN file number, device # [,secondary address ,“filename ,type ,mode”]

The OPEN statement allows the C-264 to access devices such as the cassette recorder and disk
drive, a printer, or even the screen of the C-264. The word OPEN is followed by a logical file
number, which is the number to which all other BASIC statements will refer. This number is

from 1 to 255. There is always a second number after the first, called the device number. Device
number 0 is the C-264 keyboard, 3 is the C-264 screen, 1 is the cassette recorder, 4 is the printer,
8 is the disk (usually). It is often a good idea to use the same file number as the device number.
Following the second number may be a third number called the secondary address. In the case of
the cassette, this can be 0 for read, 1 for write, and 2 for write with end-of-tape marker at the end.
In the case of the disk, the number refers to the channel number. In the printer, the secondary
addresses are used to command the printer. See the C-264 Programmer’s Reference Manual or
the manual for each specific device for more information on secondary addresses. There may
also be a string following the third number, which could be a command to the disk drive or the
name of the file on tape or disk. The type and mode refer to disk files only. (File types are
prg,seq, and rel; modes are read and write.)

EXAMPLES:

10 OPEN 3,3 OPENSs the SCREEN as a device.

10 OPEN 1,0 OPENSs the keyboard as a device.

20 OPEN 1,1,0,“DOT” OPENSs the cassette for reading, file to be searched for is named
DOT.

OPEN 4,4 OPENSs a channel to use the printer.

OPEN 15,8,15 OPENSs the command channel on the disk.

5 OPEN 8,8,12,“0:TESTFILE,SEQ,WRITE"” creates a sequential disk file for writing.

See also: CLOSE, CMD, GET#, INPUT#, and PRINT# statements, reserved variables ST, DS, and
DSS$.

118

PAINT
PAINT [color source] [,[a,b] [,mode]]

Colorsource (0-3) (default is 1, foreground)
ab ... starting coordinate, scaled (default is at PC)
mode 0 = paint an area defined by the color source selected

1 = paint an area defined by any non-background source

The PAINT command lets you fill an area with color. It will fill in the area around the specified
point until a boundary of the same color (or any foreground color, depending on which mode you
have chosen) is encountered:

The final PC will be at the starting point (a,b). Note that if the starting point is already the color of
color source you name (or any non-background color when mode 1 is in effect) nothing will
happen.

EXAMPLE:

10 CIRCLE,160,100,65,50

20 PAINT, 160,100 fills in the circle with color
POKE

POKE location, value

The POKE command allows you to change any value in the C-264 RAM memory, and lets you
modify many of the C-264 Input/Output registers. POKE is always followed by two numbers, (or
expressions). The first number is a location inside the C-264 memory. This could have any value
from 0 to 65535. (Some of these locations can make the C-264 do unusual things.) The second
number is a value from 0 to 255, which will be placed in the location, replacing any value that was
there previously.

EXAMPLE:

10 POKE 28000,8 Sets location 28000 to 8
20 POKE 28*1000,27 Sets location 28000 to 27.
PRINT

PRINT [printlist]

The PRINT statement is the major output statement in BASIC. While the PRINT statement is the
first BASIC statement most people learn to use, there are many subtleties to be mastered here as
well. The word PRINT can be followed by any of the following things:

Words inside of quotes
Variable names
Functions

Punctuation marks

The words inside of quotes are often called literals because they are printed literally as they are
typed in. When variable names are outside of quotes, the values they contain are printed.
Functions will have their values printed also. Punctuation marks are used to help format the data
neatly on the screen. The comma divides the screen into 4 columns, while the semicolon doesn’t
leave any space at all. Either mark can be used as the last symbol in the statement. This results
in the next thing PRINTed coming out as if it were continuing the same PRINT statement.

EXAMPLE:

RESULT
10 PRINT “HELLO” HELLO
20 A$ = “THERE":PRINT “HELLO,”A$ HELLO,THERE
30A=4B=2PRINTA+B 6
50 J=41:PRINT J;:PRINT J -1 41 40
60 C=A+ B:D=A-B:PRINT A;B;C,D 426 2

See also: POS(), SPC(), and TAB() FUNCTIONS.
119

PRINT#
PRINT# filenumber, print list

There are a few differences between this statement and PRINT. First of all, PRINT# is followed by
a number, which refers to the device or data file previously OPENed. The number is followed by a
comma, and a list of things to be PRINTed. The comma and semicolon have the same effect on
adding spaces as they do in the PRINT, but some devices may not work with TAB and SPC.

EXAMPLE:
100 PRINT#1,“HELLO THERE!” A$,B$

PRINT USING
PRINT [#filenumber] USING format list; print list ;

These statements let you define the format of the string and numeric output you want to print.
Put the format you want in quotes. Then add a semicolon and a list of what you want printed in
the format. The list can be variables or the actual values you want printed. For example:

10 PRINT USING “$##.##°,13.25X,Y
20 PRINT USING “###>#",“CBM”,A$

CHARACTER NUMERIC STRING

Pound Sign (#) X
Plus (+)

Minus (—)
Decimal Point (.)
Comma (,)

Dollar Sign ($)
Four Carets (t111)
Equal Sign (=) X
Greater Than Sign (>) X

The pound sign (#) reserves room for a single character in the output field. If the data item
contains more characters than you have # in your format field, the following occurs:

* For a numeric item, the entire field is filled with asterisks (*). No numbers are printed.

XX XXX XX

For example:
10 PRINT USING “####”,X
For these values for X, this format displays:

A= 1234 12
A = 567.89 568
A = 123456 ****

* For a STRING item, the string data is truncated at the bounds of the field. Only as many
characters are printed as there are pound signs (#) in the format item. Truncation occurs on the
right.

The plus (+) and minus (—) signs can be used in either the first or last position of a format field,
but not both. The plus sign is printed if the number is positive. The minus sign is printed if the
number is negative.

If you use a minus sign and the number is positive, a blank is printed in the character position
indicated by the minus sign.

If you don’t use either a plus or minus sign in your format field for a numeric data item, a minus
sign is printed before the first digit or dollar symboil if the number is negative, and no sign is
printed if the number is positive. This means that you can print one character more if the number
is positive. If there are too many digits to fit into the field specified by the # and + / — signs,
then an overflow occurs and the field is filled with asterisks (*).

120

A decimal point (.) symbol designates the position of the decimal point in the number. You can
only have one decimal point in any format field. If you don’t specify a decimal point in your
format field, the value is rounded to the nearest integer and printed without any decimal places.

When you specify a decimal point, the number of digits preceding the decimal point (including
the minus sign, if the value is negative) must not exceed the number of # before the decimal
point. If there are too many digits an overflow occurs and the field is filled with asterisks (*).

A comma (,) lets you place commas in numeric fields. The position of the comma in the format
list indicates where the comma appears in a printed number. Only commas within a number are
printed. Unused commas to the left of the first digit appear as the filler character. At least one #
must precede the first comma in a field.

If you specify commas in a field and the number is negative, then a minus sign will be printed as
the first character even if the character position is specified as a comma.

EXAMPLES:

FIELD EXPRESSION RESULT COMMENT

#HitH# + -.01 0.01- Leading zero added.

##.# — 1 1.0 Trailing zero added.

Hi## —100.5 -101 Rounded to no decimal places.

{HH#H# —1000 rEe Overflow because four digits and
minus sign cannot fit in field.

i, 10 10. Decimal point added.

H#H# 1 $1 Leading $ sign.

A dollar sign ($) symbol shows that a dollar sign will be printed in the number. You must specify
at least one # before the dollar sign or else the dollar sign will not float. If you specify a dollar
sign without a leading #, the dollar sign is printed in the position shown in the format field. If you
specify at least one # before the dollar sign, the dollar sign floats to be placed just before the
number. If your specify commas and/or a plus or minus sign in a format field with a dollar sign,
your program will print a comma or sign before the dollar sign.

I'he four carets (t 1 1 1) symbol is used to specify that the number is to be printed in E + format.
You must use # in addition to the * 1 1 t to specify the field width,. The 1 1 # t can appear either
hefore or after the # in the format field.

You must specify four carets (1 t 1 1) when you want to print a number in E — format (scientific
notation). If you specify more than one but fewer than four carets, you will get a syntax error. If
you specify more than four carets only the first four are used. The fifth caret is interpreted as a
no text symbol.

An equal sign (=) is used to center a string in the field. You specify the field width by the number
ol characters (# and =) in the format field. If the string contains fewer characters than the field
width, the string is centered in the field. If the string contains more characters than can be fit

nlo the field, the right most characters are truncated and the string fills the entire field.

A greater than sign (>) is used to right justify a string in a field. You specify the field width by the
number of characters (# and =) in the format field. If the string contains fewer characters than

the field width, the string is right justified in the field. If the string contains more characters than
«an be fit into the field, the right-most characters are truncated and the string fills the entire field.

121

PUDEF
PUDEF 1 through 4 characters

PUDEF lets you redefine up to 4 symbols in the PRINT USING statement. You can change
blanks, commas, decimals points, and dollar signs into some other character by placing the new
character in the correct position in the PUDEF control string.

Position 1 is the filler character. The default is a blank. Place a new character here when you want
another character to appear in place of blanks.

Position 2 is the comma character. Default is a comma.
Position 3 is the decimal point.
Position 4 is the dollar sign.

EXAMPLES:

10 PUDEF “*” PRINTs * in the place of blanks.

20 PUDEF “ @” PRINTs @ in place of commas. _

30 PUDEF *.)” PRINTs decimal points in place of commas, and commas in place of
decimal points.

40 PUDEF “ .,£” PRINTs English pound sign in place of $. Other signs are the default
values. Be sure to type them in like this or your computer assumes
you want to PRINT blanks instead of default symbols.

READ

READ variable list

This statement is used to get information from DATA statements into variables, where the data
can be used. Care must be taken to avoid reading strings where the READ statement expects a
number, which will give you a TYPE MISMATCH ERROR.

REM

REM remark

The REMark is just a note to whoever is reading a LIST of the program. It may explain a section
of the program, give information about the author, etc. REM statements in no way effect the
operation of the program, except to add to its length (and therefore slow it down). The word REM
may be followed by any text, although use of graphic characters will give strange results.
RENAME

RENAME “old name” TO “new name” [,Ddrive number ,Uunit number]

Used to rename a file on a diskette.

EXAMPLE:

RENAME “TESTS” TO “FINALTEST”,DO Changes the name of the file TEST to
FINALTEST.

RESTORE

RESTORE [line number]

When executed in a program, the DATA statement pointer (indicating which item will be read
next) is reset to the first item in the list. This gives you the ability to re-READ the information. If a
line number follows the RESTORE statement, the pointer will be set to that line. Otherwise the
pointer will be reset to the first DATA statement in the program.

122

RESUME
RESUME [line-number | NEXT]

Used to return to execution after TRAPping an error. With no arguments, RESUME will attempt to
re-execute the statement in which the error occurred. RESUME NEXT will resume execution on
the line following the statement on which the error occurred, the RESUME line-number will GOTO
the line-number and begin execution there.

RETURN

This statement is always used with the GOSUB statement. When the program hits a RETURN
statement, it will go to the statement immediately following the last GOSUB command executed.
If no GOSUB was previously issued, then a RETURN WITHOUT GOSUB ERROR will occur.
SCALE

SCALE <1]0>

The scaling of the bit maps in multicolor and high resolution modes can be changed with the
SCALE command. Entering:

SCALE 1

turns scaling on. Coordinates will then be scaled from 0 to 1023 in both X and Y rather than the
initial values, which are:

X Y
multicolormode 0 to 159 0 to 199
highresolutionmode 0to 319 0to 199
highres. splitscreenmode 0to 319 0 to 159
multicolor split screen mode . . . 0 to 159 0 to 159
Scaling can be turned off by entering SCALE 0.
SCNCLR
SCNCLR
Clears the current screen, whether graphics, text, or both (split screen).
SOUND

SOUND voice number, frequency, duration

This statement produces a SOUND using one of three voices with a frequency based on the
range 0 - 1023 for a duration of 0 - 65535 60ths of a second.

\ Voice

1 voice 1 (tone)

2 voice 2 (tone)

3 voice 2 (white noise)

After executing a SOUND instruction, BASIC will resume execution. If, however, a SOUND for
voice N is requested, and the previous SOUND for the same N is still playing, BASIC will wait for
the previous SOUND to complete. SOUND with a duration of 0 is a special case. It will cause
BASIC to abort the current SOUND for that voice immediately, regardless of the duration
remaining on the previous SOUND. See the MUSIC NOTE TABLE for the frequency values that
correspond to real notes.

123

SSHAPE /| GSHAPE

SSHAPE and GSHAPE are used to save and restore rectangular areas of multicolor or high
resolution screens using BASIC string variables. The command to save an area is:

SSHAPE strvar, a1,b1 [,a2,b2]

strvar. ... oL String name to save data in
albl Corner coordinate (scaled)
a2b2, Corner coordinate opposite (a1,b1) (default is the PC)

Because BASIC limits string lengths to 255 characters, the size of the area you may save is
limited. The string size required can be calculated using one of the following (unscaled) formulas:

L(multi-color mode) = INT ((ABS(al-a2) + 1)/ 4 + .99) * (ABS(b1-b2) + 1) + 4
L(hi-res) = INT ((ABS(at-a2) + 1)/8 + .99) * (ABS(b1-b2) + 1) + 4

The shape is saved row by row. The last four bytes of the string contain the column and row
lengths less one (i.e.: ABS (a1-a2)) in low/high byte format (if scaled divide the lengths by 3.2 (X)
and 5.12(Y)).

Now, the command to draw a saved shape to any area of the screen:
GSHAPE string [, [a,b] [,mode]]

string................... Aggregate with shape to draw
ab..... Top left coordinate telling where (scaled — the default is the PC)
mode................... Replacement mode:

0/ place shape as is (default)
1/ place field inverted shape
2/ OR shape with area

3/ AND shape with area

4/ XOR shape with area

STOP
STOP

This statement will halt the program. The following message appears: BREAK IN LINE xxxx,
where xxxx is the line number containing the STOP. The program can be re-started at the
statement following STOP if you use the CONT command. The STOP statement is usually used
while debugging a program.

SYS
SYS address

The word SYS is followed by a decimal number or numeric variable in the range 0 to 65535. The
program will at this point begin executing the machine language program starting at that memory
location. This is similar to the USR function, but does not pass a parameter. See the C-264
Programmer’s Reference Guide for information about machine language programs.

TRAP

TRAP line-number

When turned on, TRAP intercepts all error conditions (including STOP KEY) except “LINE
NUMBER NOT FOUND". In the event of any execution error, the error flag is set, and execution is
transferred to the line number named in the TRAP statement. The line number in which the-error
occurred can be found by interrogating the variable EL, and the specific error condition is
contained in ER. The string function ERR$ (ER) will give the error message corresponding to any
error condition ER.

NOTE: An error in a TRAP routine cannot be trapped. The RESUME statement can be used to
resume execution. TRAP with no line-number argument will turn off error TRAPping.

124

TRON

TRON

TRON is used in program debugging. This statement begins trace mode. When you are in trace
mode, as each statement executes, the line number of that statement is printed.

TROFF

TROFF

This statement turns trace mode off.

VoL

VOL volume level

Sets the current volume level. V. may be from 0 - 8, with 8 being maximum volume, and 0 being
off. VOL affects all voices.

WAIT

WAIT address, value 1[,value 2]

The WAIT statement is used to halt the program until the contents of a location in memory
change in a specific way. The word WAIT is followed by a number, which is the memory address
being checked. Then comes a comma, and another number. There may be another comma and a
third number as well. These last two numbers must be within the range 0-255.

The contents of the memory location are first exclusive-ORed with the third number, if present,
and then logically ANDed with the second number. If the result is zero, the program goes back to
that memory location and checks again. When the result is non-zero, the program continues with
the next statement.

4. FUNCTIONS

a. NUMERIC FUNCTIONS
ABS(X) (absolute value)
The absolute value returns the positive value of the number.

ATN(X) (arctangent)
Returns the angle, measured in radians, whose tangent is X.

COS(X) (cosine)
Returns the value of the cosine of X, where X is an angle measured in radians.

DEC (hexadecimal-string)
Returns decimal value of hexadecimal-string (0 < hexadecimal-string < FFFF)

EXP(X)
Returns the value of the mathematical constant e (2.71827183) raised to the power of X.

FNxx(x)
Returns the value of the user-defined function xx created in a DEF FNxx statement.

125

INSTR (string 1, string 2 [,starting-position])

Returns position of string 2 in string 1 at or after starting-position. Starting-position defaults to
the beginning of string 1. If no match is found, a value of 0 is returned.

INT(X) (integer)

Returns the truncated value of X, that is, with all decimal places to the right of the decimal point
removed. The result will always be less-than or equal-to X. Thus, any negative numbers with
decimal places will become the integer less-than their current value.

If the INT function is to be used for rounding up or down, the form is INT(X + .5).
EXAMPLE:
X=INT(X*100 + .5)/100 Rounds to the nearest penny.

JOY (n)
Whenn = 1.... Position of joystick #1
n = 2....Position of joystick #2

Any value of 128 or more means the fire button is also depressed. The direction is indicated as
follows:

fire = 128 + 1
8 2
7 0 3
6 4
5
LOG(X) (logarithm)

This will return the natural log of X. The natural log is log to the base e(see EXP(X)). To convert to
log base 10, simply divide by LOG(10).

PEEK(X)

This is used for finding out the contents of memory location X, in the range of 0-65535, giving a
result from 0-255. This is often used in conjunction with the POKE statement.

RCLR (N)

Returns current color assigned to source N (0 through 4)

(0= background, 1= foreground, 2= multicolor 1, 3= multicolor 2, 4= border).

RDOT (N)

Returns characteristics of current position of the pixel cursor (PC) at XPOS/YPOS.

N — 0 for XPOS
1 for YPOS
2 color source

RGR ()
Returns current graphic mode (dummy argument).

RLUM (N)
Returns current luminance level assigned to source N.

126

RND (X) (random number)

This function will return a random (or nearly so) number between 0 and 1. This is useful in games,
to simulate dice rolls and other elements of chance, and is also used in some statistical
applications. The first random number should be generated by the formula RND(— Tl), to start
things off differently every time. After this, the number in X should be a 1, or any positive number.
If X is zero, RND is seeded from the hardware clock and random numbers are generated. A
negative value for X will seed the random number generator from X and give random numbers.
The use of the same negative number for X will result in the same sequence of random numbers.
A positive value gives random numbers based on the previous seed.

To simulate the rolling of a die, use the formula INT(RND(1)*6 + 1). First the random number from
0-1 is multiplied by 6, which expands the range to 0-6 (actually, greater than zero and iess than
six). Then 1 is added, making the range 1-under 7. The INT function chops off all the decimal
places, leaving the result as a digit from 1 to 6. To simulate 2 dice, add two of the numbers
obtained by the above formula together.

EXAMPLE:

100 X = INT(RND(1)*6) + INT(RND(1)*6) + 2 Simulate 2 dice.

100 X = INT(RND(1)* 1000) + 1 Number from 1-1000.
100 X = INT(RND(1)* 150) + 100 Number from 100-249.
SGN(X) (sign)

This function returns the sign, as in positive, negative, or zero, of X. The result will be + 1 if
positive, 0 if zero, and — 1 if negative.

SIN(X) (SINE)

This is the trigonometric sine function. The result will be the sine of X, where X is an angle in
radians.

SQR(X) (square root)

This function will return the square root of X, where X is as positive number or 0. If X is negatve,
an ILLEGAL QUANTITY ERROR results.

TAN(X) (tangent)

The result will be the tangent of X, where X is an angle in radians.

USR (X)

When this function is used, the program jumps to a machine language program whose starting
point is contained in memory locations 760 and 761. The parameter is passed to the machine
language program, which will return another number back to the BASIC program. See the C-264
PROGRAMMER’'S REFERENCE MANUAL for more details on this, and on machine language
programming.

VAL(X$)

This function converts the string X$ into a number, and is essentially the inverse operation from
STRS$. The string is examined from the left-most character to the right, for as many characters as
are in recognizable number format. If the C-264 finds illegal characters, only the portion of the
string up to that point is converted.

EXAMPLE:

10 X = VAL(*123.456") X = 123.456
10 X = VAL(*3E03") X = 3000

10 X = VAL(“12A13B”) X=12

10 X = VAL(“RIUO17*") X=0

10 X = VAL(*-1.23.23.23") X=-123

127

b. STRING FUNCTIONS

ASC(X$)
This function will return the ASCII code of the first character of X$.

CHR$(X)
This is the opposite of ASC, and returns a string character whose ASCII code is X.

ERR$ (N)
Returns string describing error condition N (see TRAP).

HEX$ (N)
Returns a 4 character string containing the hexadecimal representation of value N (0 < N < 65536)

LEFT$ (S$,X)
This will return a string containing the leftmost X characters of X$.

LEN(X$)
Returns the number of characters (including spaces and other symbols) in the string X$.

MID$(X$,S,X)

This will return a string containing X characters, starting from the Sth character in X$. MID$ can
also be used on the left side of assignment statement.

MID$ may also be used as a pseudo-variable as well as a function. MID$ (string-variable, starting-
position , length) = source-string.

Reassigns values of positions (starting-position) through (starting-position + length) of source-
string to the characters of string-variable in corresponding locations. Length defaults to the
length of string-variables, and an error results if (starting-position + length) is greater than the
length of source-string.

EXAMPLE:

10 A$=“THE DOG IN THE HAT”:
20 PRINT A$

30 MID$(A$,5,3) = “CAT”

40 PRINT A$

RIGHT$(X$,X)

This will return the rightmost X characters in X$.

STR$(X)

This will return a string which is identical to the PRINTed version of X$.
EXAMPLE:

A$ = STR$(X)

128

c. OTHER FUNCTIONS

FRE(X)

This function returns the number of unused bytes available in memory. X is a dummy argument.
POS(X)

This function returns the number of the column (0-39) which the next PRINT statement will
begin on the screen. X is a dummy argument.

SPC(X)

This is used in the PRINT statement to skip over X spaces. X can have a value from 0-255.
TAB(X)

This is used in the PRINT statement. The next item to be printed will be in column number X. X
can have a value from 0-255. For screen output, TAB (x) is the same as SPC (x).

Pl (n)

The Pl symbol, when used in an equation, has the value of 3.14159265.

129

APPENDIX C: BASIC 3.5 ABBREVIATIONS

KEYWORD ABBREVIATION TYPE

ABS a B function—numeric
ASC a S function—numeric
ATN a T function— numeric
AUTO a U command
BACKUP b A command

BOX b 0 statement

CHAR ch A statement

CHR$ c SHIFT H function—string
CIRCLE c SHIFT | statement

CLOSE cl o statement

CLR c L statement

CMD c M statement
COLLECT col L command

COLOR co SHIFT L statement

CONT c o] command

COPY co P command

COSs none function—numeric
DATA d SHIFT A statement

DEC none function—numeric
DEFFN d E statement
DELETE de L command

DIM d [statement
DIRECTORY di R command

DLOAD d L command

DO none statement

DRAW d R statement

DSAVE d s command

END e N statement

ERR$ e R function—string
EXP e X function—numeric
FOR f o statement

FRE f R function—numeric
GET g E statement
GETKEY getk E statement

GET# none statement

GOSUB go S statement

GOTO g o] statement

130

GRAPHIC
GSHAPE
HEADER
HEX$
IF...GOTO
IF.. . THEN. ..
INPUT
INPUT#
INSTR

INT

JOoy

KEY

LEFTS$

LEN

LET

LIST

LOAD
LOCATE
LOG

LOOP
MID$
MONITOR
NEW

NEXT
ON...GOSuB
ON...GOTO
OPEN
PAINT
PEEK
POKE

POS
PRINT
PRINT#
PRINT USING
PUDEF
RCLR
RDOT
READ

REM
RENAME
RENUMBER
RESTORE
RESUME

he

on...go
on...g

T T T

re

ren

re

res

17}
<
E
-

w
I
e
-

3
(]
=l
(]

>
[e]
2
[

il

m

O o~

(%)

[%] > v = =} =]
x [el T Ne} [} [e]
o 2 K] = =] 2 3
- [l —~ = N o [

3
(]
3
()

»
=
5
)

%)
mooOoc— D

X
B
-

w
S
"
-

cCwcz

w

statement
statement
command
function—string
statement
statement
statement
statement
function—numeric
function—numeric
function—numeric
command

function—string
function—numeric

statement
command
command
statement
function—numeric
statement
function—string
statement
command
statement
statement
statement
statement
statement
function—numeric
statement
function—numeric
statement
statement
statement
statement
function—numeric
function—numeric
statement
statement
command
command
statement
statement

RETURN re T statement

RGR [SHIFT G function—numeric
RIGHT$ (G SHIFT | function—string
RLUM r L function—numeric
RND r N funtion—numeric
RUN r EmE Y command

SAVE s A command

SCALE sc A statement
SCNCLR s SHIFY C statement
SCRATCH sC R command

SGN s G function—numeric
SIN s | function—numeric
SOUND s Bl o statement

SPC(s SHIFT P function—special
SQR s m Q function—numeric
SSHAPE s SHIF! S statement

STatus st SHIF! A reserved—numeric variable
STOP s T statement

STR$ st R function—string
SYS s Y statement

TAB(t A function—special
TAN none function—numeric
TI none reserved—numeric variable
TI$ none reserved—string variable
TRAP t R statement

TROFF tro F statement

TRON tr o statement

UNTIL u N statement

USR u S function—special
VAL none function—numeric
VERIFY v E command

VOL v SHIFT 0] statement

WAIT w A statement

WHILE w SHIFT H statement

132

APPENDIX D: TEDMON

INTRODUCTION

TEDMON is a built-in machine language program which lets you easily write machine language
programs. TEDMON includes a machine language monitor, a mini assembler, and a disassembler.

Machine language programs written using TEDMON can run by themselves, or be used as very
fast ‘subroutines’ for BASIC programs since TEDMON has the ability to coexist peacefully with
BASIC.

TEDMON COMMANDS

A ASSEMBLE Assemble a line of 6502 code
C COMPARE Compare two sections of memory and report differences.
D DISASSEMBLE Disassemble a line of 6502 code.
F FILL Fill memory with the specified byte.
G GO Start execution at the specified address.
H HUNT Hunt through memory for all occurrences of certain bytes.
L LOAD Load a file from tape or disk.
M MEMORY Display the hexadecimal values of memory locations.
R REGISTERS Display the 6502 Registers.
S SAVE Save to tape or disk.
T TRANSFER Transfer code from one section of memory to another.
X EXIT eXit TEDMON.
USING TEDMON
1. Enter TEDMON by typing:
MONITOR

TEDMON will respond by displaying the 6502 registers and flashing the cursor. The cursor is your
prompt that lets you know that TEDMON is waiting for your commands.

COMMAND DESCRIPTIONS

COMMAND: A (ASSEMBLE)

PURPOSE: Enter a line of assembly code.

SYNTAX: A <address> <opcode mnemonic> <operand>

<address> A four-digit hexadecimal number indicating the location in memory to place the
opcode.

<opcode mnemonic> A standard MOS assembly language mnemonic eg. LDA, STX, ROR, etc.

<operand> The operand, when required, can be of any of the legal addressing modes. (For zero-
page modes a 2 digit hex number whose value is less than $100 is required. For non-zero page
addresses 4 digit hex numbers are required.)

133

A RETURN is used to indicate the end of the assembly line. If there are any errors on the line, a
question mark is displayed to indicate an error, and the cursor moves to the next line. The screen
editor can be used to correct any errors on the line.

After a line of code is successfully assembled, the assembler will print a prompt containing the
next legal memory location for an instruction, so A and the line number do not have to be typed
more than once when typing assembly language programs into the TED.

EXAMPLE:

.A 1200 LDX #$00
A 1202

COMMAND: C (COMPARE)
PURPOSE: Compare two areas of memory
SYNTAX: C <address 1> <address 2> <address 3>

<Address 1> is a hex number indicating the start address of the area of memory to compare
against.

<Address 2> is a hex number indicating the end address of the area of memory to compare
against.

<Address 3> is a hex number indicating the start address of the other area of memory to
compare with.

If the two areas of memory are the same, then TEDMON will print a RETURN and flashing cursor,
indicating that the second area of memory is the same as the first. The addresses of any bytes in
the two areas which are different are printed out on the screen.

COMMAND: D (DISASSEMBLE)

PURPOSE: Disassemble machine code into assembly language mnemonics and operands.
SYNTAX: D <address> <address 2>

<address> A hexadecimal number setting the address to start the disassembly.

<address 2> An optional hexadecimal ending address of code to be disassembled.

The format of the disassembly is only slightly different than the input format of an assembly. The
difference is that the first character of a disassembly is a comma rather than an A (for
readability).

A disassembly listing can be modified using the screen editor. Make any changes to the
mnemonic or operand on the screen, then hit a carriage return. This will enter the line and call the
assembler for further modifications.

A disassembly can be paged. Typing a D will cause the next page of disassembly to scroll onto
the screen.

EXAMPLE:

D 1000 1400

. 1000 LDA #3$00

. 1002 ?27?

. 1003 BNE $f1030

134

COMMAND: F (FILL)

PURPOSE: Fill a range of locations with a specified byte.

SYNTAX: F <address 1> <address 2> <byte>

<address 1> The first location to fill with the <byte>

<address 2> The last location to fill with the <byte>

<byte value> A 2 digit hexadecimal number to be written

This command is useful for initializing data structures or any other RAM area.
EXAMPLE: F 0400 0518 EA

Fills memory locations from $0400 to $0518 with $EA (a NOP instruction).

COMMAND: G (GO)
PURPOSE: Begin execution of a program at a specified address.
SYNTAX: G<address>

<address> An optional argument specifying the new value of the program counter and address
where execution is to start. When <address> is left out execution will begin at the current
Program Counter. (The current PC can be viewed using the R command.)

The GO command will restore all registers (displayable by the R command) and begin execution
at the specified starting address. Caution is recommended in using the GO command.

EXAMPLE: G 140C
Execution begins at location $140C.

COMMAND: H (HUNT)

PURPOSE: Hunt through memory within a specified range for all occurrences of a set of bytes.
SYNTAX: H <address 1> <address 2> <data>

<address 1> beginning address of hunt procedure

<address 2> ending address of hunt procedure

<data> data to search for may be hexadecimal or an ASCII string. An ASCII string is specified by
preceding the first character with a single quote, eg, 'STRING. Data may be a single or multiple
element argument.

EXAMPLE:

H C000 FFFF 'READ Search for ASCII string
READ

H A000 A101 A9 FF 4C Search for data $A9, $ff, $4C.
COMMAND: L (LOAD)

PURPOSE: Load a file from cassette or disk.

SYNTAX: L “<filename>", <device>

<filename> is any legal C-264 filename.

<device> is a two-digit byte indicating the device to load from.
01 is cassette

08 is disk (or 09, etc.)

135

The Load command causes a file to be loaded into memory. The starting address is contained in
the first two bytes of the file (a PGM file). In other words, the Monitor Load command always
loads a file into the same place it was saved from. This is very important in machine language
work, since few programs are completely relocatable. The file will be loaded into memory until
the EOF is found.

EXAMPLE:
L “SCREEN”, 01 reads a file from cassette.
L “TANK”, 08 reads a file from disk drive.

COMMAND: M (MEMORY DISPLAY)

PURPOSE: Display memory as a hexadecimal and ASCIlI dump within the specified address
range.

SYNTAX: M <address 1> <address 2>

<address 1> First address of memory dump. Optional. If
omitted one page will be displayed. The first byte will be the last address specified.

<address 2> Last address of memory dump. Optional. If omitted one page will be displayed. The
first byte will be the data of <address 1>.

Memory is displayed in the following format:
>A048 41 E7 00 AA AA00 9856 45:A! . * .. VE

Memory content may be edited using the screen editor. Move the cursor to the data to be
modified and type the desired correction and hit return. If there is a bad RAM location or an
attempt to modify ROM, an error flag (?) will be displayed.

An ASCII dump of the data is displayed in REVERSE (to contrast the dump with other data
displayed on the screen) to the right of the hex data. When a character is not printable, it will be
displayed as a reversed period (.).

As with the Disassembly command, you can page down by typing M and RETURN.
EXAMPLE:

M 1C00

>1C00 41 E7 00 AAAA 009856 45 :A! . * .. VE
>1C08 41 E7 00 AA AA 009856 45 :A! . * .. VE
>1C10 41 E7 00 AA AA009856 45 :A!. *..VE
>1C18 41 E7 00 AA AA00 9856 45 :A! . * .. VE
>1C20 41 E7 00 AAAA 009856 45 :A!. * .. VE
>1C28 41 E7 00 AAAA 009856 45 :A!. * .. VE
>1C30 41 E7 00 AAAAO00985645 :A! . * .. VE
>1C38 41 E7 00 AAAA 009856 45 :A! . * .. VE
>1C40 41 E7 00 AAAAO09856 45 :Al. * .. VE
>1C48 41 E7 00 AA AA009856 45 :A! . * .. VE
>1C50 41 E7 00 AA AA 009856 45 :A!.*..VE
>1C58 41 E7 00 AA AA00 9856 45 :Al. * .. VE

COMMAND: R (REGISTER DISPLAY)

PURPOSE: Show important 6502 registers. The program status register, the program counter, the
accumulator, the X and Y index registers and the stack pointer are displayed.

136

SYNTAX: R
Note that the stack pointer is displayed without its implied 8th bit.

Since the 8th bit of the stack pointer has been mentioned, it is appropriate to point out a bus in
the 6502. When a PHP instruction is executed, the stack 8th bit of the stack pointer is OR’ed into
the status byte and is stored on the stack with bit 4 (the break flag!) always set. For 99.9% of all
applications this makes no difference. When this bug does turn up, it causes problems very
difficult to track down.

EXAMPLE: R
PC SR AC XR YR SP
; 1002 01 02 03 04 F6
COMMAND: S (SAVE)
PURPOSE: Save the contents of memory onto tape or disk.
SYNTAX: S “<filename>" <device> <address 1>,<address 2>

<filename> Any legal C-264 filename. To save the data, <filename> must be enclosed in double
quotes. Single quotes are illegal.

<device> Two possible devices are cassette and disk. To save on cassette, use device 01. The
device number of the C-264 disk drive is usually 08. However, this can be changed (i.e. when
using more than one disk. See C-264 DISK MANUAL)

<address 1> Starting address of memory to be saved.

<address 2> Ending address of memory to be saved + 1. All data up to but not including the byte
of data at this address will be saved.

The file created by this command is a program file. That is the first two bytes contain the starting
address <address 1> of the data. The file may be recalled using the L command.

EXAMPLE: S “GAME”, 08, 0400, 0C00
Saves memory from $0400 to $0BFF onto disk.

COMMAND: T (TRANSFER)

PURPOSE: Transfer segments of memory from one memory area to another.
SYNTAX: T <address 1> <address 2> <address 3>

- .address 1> Starting address of data to be moved

-‘address 2> Ending address of data to be moved

- address 3> Starting address of new location (where the data will go)

I)ata can be moved from low memory to high memory or vice-versa. Additional memory segments
of any length can be moved forward or backward any number of bytes (i.e., shifted).

I XAMPLE: T 1400 1600 1401
Shifts data from $1400 up to and including $1600 one byte higher in memory.

137

COMMAND: V (VERIFY)

PURPOSE: Verify a file on cassette or disk with the memory contents.
SYNTAX: V “<filename>", <device>

<filename> is any legal C-264 filename.

<device> is a hex number indicating the device the file is on.

The Verify command compares a file to memory contents. If the file does not match memory,
ERROR is printed.

EXAMPLES: V “SCREEN", 8
V“FILE 7", 1

COMMAND: X (eXit)
PURPOSE: Exit to BASIC
SYNTAX: X

When the X command is given, the machine stack pointer is set to the current stack pointer value
(see the R command). If this is modified in any way, after exiting to BASIC the BASIC CLR
command should be used to reset the stack pointer.

138

APPENDIX E: CONVERTING STANDARD BASIC PROGRAMS
TO COMMODORE BASIC 3.5

If you have programs written in a BASIC other than Commodore BASIC, some minor adjustments
may be necessary before running them on the Commodore 264. We've included some hints to
make the conversion easier.

STRING DIMENSIONS

Delete all statements that are used to declare the length of strings. A statement such as DIM
A$(1,J), which dimensions a string array for J elements of length |, should be converted to the
Commodore BASIC statement DIM A$(J).

Some BASICs use a comma or ampersand for string concatenation. Each of these must be
changed to a plus sign, which is the Commodore BASIC operator for string concatenation.

In Commodore BASIC, the MID$, RIGHT$, and LEFT$ functions are used to take substrings of
strings. Forms such as A$(l) to access the Ith character in A$, or A$(l,J) to take a substring of A$
from position | to J, must be changed as follows:

Other BASIC Commodore BASIC
A$(l) = X$ MID$(AS,1,J) = X$
A$(LJ) = X$ MID$(AS,1,J) = X$
MULTIPLE ASSIGNMENTS

To set B and C equal to zero, some BASICs allow statements of the form:
1OLETB=C=0

Commodore BASIC would interpret the second equal sign as a logical operator and set B = —1
if C = 0. Instead, convert this statement to:

10C=0:B=0

MULTIPLE STATEMENTS

Some BASICs use a backslash (/) to separate multiple statements on a line. With Commodore
BASIC, separate all statements by a colon (:).

MAT FUNCTIONS

Programs using the MAT functions available on some BASICs must be rewritten using FOR . . .
NEXT loops to execute properly.

139

APPENDIX F c-264 MEMORY REGISTER MAP

REG

W O N O O s W N = O

R
N = O

13

$FF0O0
$FFO1

$FF02
$FFO3
$FF04
$FF05
$FF06
$FFO7
$FF08
$FF09
$FFOA
$FFOB
$FFOC
$FFOD
$FFOE
$FFOF
$FF10
$FF11

$FF12

$FF13

$FF14
$FF15
$FF16
$FF17

$FF18
$FF19
$FF1A
$FF1B
$FF1C
$FF1D
$FF1E
$FF1F
$FF3E
$FF3F

BKGDO
BKGD1
BKGD2
BKGD3
BKDG4

: DB7 : DB6 : DB5 : DB4 : DB3 : DB2 : DB1 : DBO

TIMER # 1 RELOAD VALUE, BITS 0-7 (LOW)

TIMER # 1 RELOAD VALUE, BITS 8-15 (HIGH)

TIMER # 2 RELOAD VALUE, BITS 0-7 (LOW)

TIMER # 2 RELOAD VALUE, BITS 8-15 (HIGH)

TIMER # 3 RELOAD VALUE, BITS 0-7 (LOW)
: TIMER # 3 RELOAD VALUE, BITS 8-15 (RIGH)
TEST :ECM :BMM ‘BLANK # ROWS :¥2 Y1 YO
:RVS OFF :PAL :FREEZE :MCM #COLS X2 X1 X0
: KEYBOARD LATCH
(IRQ T3 :NC A-T2 T I-LP :-RAS :NC
:NC EI-T3 ‘NC :EI-T2 EI-T1 El-LP :EI-RAS RC8
:RC7 :RC6 :RC5 :RC4 :RC3 :RC2 :RC1 :RCO
‘NG :NC :NC ‘NC ‘NC :NC :C9 :CUR8
:CUR?7 :CUR6 :CUR5S :CUR4 :CUR3 :CUR2 :CUR1 :CURO
:SND1-7 :SND1-6 :SND1-5 :SND1-4 :SND1-3 :SND1-2 :SNDi1-1 :SND1-0
:SND2-7 :SND2-6 :SND2-5 :SND2-4 :SND2-3 :SND2-2 :SND2-1 :SND2-0
‘NC :NC ‘NC ‘NC :NC :NC :SND2-9 :SND2-8
SND-REL :NOISE ‘V2-SEL ‘V1-SEL :VOL3 voL2 VoL 1 :VOLO
:NC :NC :BMB2 :BMB1 :BMBO :RBANK :S19 :51-8
:CB5 :CB4 :CB3 :CB2 :CB1 :CBO :SCLOCK :STATUS
VM4 VM3 VM2 VM1 VMO :NC :NC :NC
:NC ‘LUM2 ‘LUM1 :LUMO :COLOR3 :COLOR2 :COLOR1 :COLORO
‘NC ‘LUM2 LUM1 :LUMO :COLOR3 :COLOR2 :(COLOR?1 :COLORO
:NC ‘LUM2 LUM1 :LUMO :COLOR3 :COLOR2 :COLOR1 :COLORO
‘NC ‘LUM2 ‘LUM1 :LUMO :COLOR3 :COLOR2 :COLOR1 :COLORO
:NC :LUM2 :LUM1 :LUMO :COLOR3 :COLOR2 :COLOR1 :COLORO
:NC :NC :NC :NC :NC :NC :BRES :BRE8
:BRE7 :BRE6 :BRE5 :BRE4 :BRE3 :BRE2 :BRE1 BREO
:NC :NC :NC :NC :NC :NC ‘NC VL8
VL7 VL6 VL5 VL4 VL3 R Vit VLO
‘H8 H7 ‘H6 :H5 ‘H4 H3 ‘H2 H1
:NC ‘BL3 :BL2 :BL1 :BLO :vsuB2 :VSUB1 :VSUBO

ROM SELECT
RAM SELECT

140

ADDRESS

$FFFE-FFFF

$FFFC

$FFFA

$FF84-FFF5

$FFO0-FF3F

$FE00-FEFF

$FDEO-FDEF

$FDDO-FDDF

$FD10-FD1F

$FDO00-FDOF

$FCDO-FCFF

$D800-FCFF

$D000-D7FF

$C000-D7FF

$8000-BFFF

$4000-FFFF

$2000-3FFF

$C1C00-1FFF

$1800-1BFF

$1000-

$OCO00-0FFF

$0800-0BFF

$0000-07FF

- CONTENTS

<IRQVECTOR

<RES VECTOR

< NMIVECTOR (NOT USED)
<

<KERNALJUMPTABLE

<

<TEDCHIP

<

< DMADISKSYSTEM

<

< CARTRIDGE BANK PORT
<6529 PARALLEL PORT
<ACIA

<

<
<
<
<
< CHARACTER ROM
<

<MOREBASIC

<

<BASIC
<

< RAM, ALSO START OF BASIC TEXT
< AREAWHEN HIRES GRAPHICS ARE USED

< BIT MAP SCREEN DATA

<

< HIRES SCREEN VIDEO MATRIX
<

< HIRES SCREEN ATTRIBUTE BYTES

<

< BASIC TEXT AREA (BIT MAP OFF)
<

< TEXT VIDEO MATRIX

<

<TEXT ATTRIBUTE BYTES

<

< SYSTEM STORAGE

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVVV

*

*

»

*

*

NOTES

ROM BANK HIGH (cont)

TED Chip and /O
space appear in
all memory maps.

ROM banking routines

(appears in all ROM maps)

ROM BANK HIGH

ROM BANK LOW

*NOTE: In the 64K RAM system, RAM goes from $0000-$FCFF, and from $FF40-$FFFF.

141

APPENDIX G: MUSICAL NOTE TABLE

NOTE SOUND REGISTER VALUE ACTUAL FREQUENCY (HZ)
A 7 110

B 118 123.5
C 169 130.8
D 262 146.8
E 345 164.7
F 383 174.5
G 453 195.9
A 516 220.2
B 571 246.9
C 596 261.4
D 643 293.6
E 685 330

F 704 349.6
G 739 392.5
A 770 440.4
B 798 494.9
C 810 522.7
D 834 588.7
E 854 658

F 864 699

G 881 782.2
A 897 880.7
B 911 989.9
C 917 1045

D 929 1177

E 939 1316

F 944 1398

G 953 1575

The above table contains the sound register values of four octaves of notes. The sound register
values are used as the second parameter of the SOUND command. To use the first note in the
table (A - sound register value 7) use the 7 as the second number after the SOUND command —
SOUND 1,7,30.

Use the following formula to find the sound register values for frequencies other than those in
the table:

SOUND REGISTER VALUE = 1024 — (111860.781/FREQUENCY)

Both the table of sound register values and the above formula are for NTSC televisions. This is
the television standard used throughout the United States and all of Canada. If you are in a
country where PAL is the television standard, you should use the following formula to calculate
new sound register values for the entire table:

SOUND REGISTER VALUE = 1024 — (111840.45/FREQUENCY)

142

APPENDIX H: ASCII AND CHR$ CODES

This appendix shows you what characters will appear if you PRINT CHR$(X), for all possible
values of X. It will also show the values obtained by typing PRINT ASC(“X"), where X is any
character you can type. This is useful in evaluating the character received in a GET statement,
converting upper/lower case, and printing character based commands (like switch to upper/lower
case) that could not be enclosed in quotes.

PRINTS CHRS$ PRINTS CHRS$ PRINTS CHRS PRINTS CHRS

0 17 . 34 3 51

1 m 18 # 35 4 52

2 19] 8 36 5 53

3 20| % a7 6 54

4 21 & 38 7 55

2 5 22 39 8 56
6 23 (40 9 57

7 24) 41 58

oisases (IR (8 25 . 42 ; 59
ENABLES C:[¢] 26 + 43 - 60
10 | X3 27 , 44 = 61

LY - W - 45 > 62

12 29) 46 ? 63

3 B 3 / 47 @ 64
| B 3 0 48 A 65
15 32 1 49 B 66

16 ! 33 2 50 o} 67

143

PRINTS CHRS PRINTS CHRS | PRINTS CHRS | PRINTS CHRS
D 68 97 126 | HH 155
E 69 | []] 98 | N 127 | g 156
Foo70 | H 99 128 157
G 7| H 100 120 | [158
Hoo 72 |8 100 B 10 | B 159
| 73 | 4 102 131 160
J 74 | [103 | 122 | I e
K 75 | [104 133 162
L 76 | K] 105 13¢ | [] 163
M 77 | [N 106 135 L] 164
N 78 |] 107 136 | [165
o 79 | J 108 137 B 166
P so | N 109 138 | [] 167
a 8 | 110 130 | kw168
R 82 | [111 140 | P 169
s 83 | [] 112 | G 41 1 170
T 84 113 142 | [B 7
U 85 |] 114 143 (W 172
Vv g6 | (Vv 15 | [144 Y 173
w e | [1. 145 | B] 174
X 88 | [d 17 | B 146 | [175
Y Bo | X 118 w7 | [d 17s
z 90 119 | B 148 | HH 7w
[91 120 | [J 1| E 178
£ 92 | [121 X 150 Hl 179
] 93 | (¢ 122 151 [180
9 | 12 152 | O 18
- 95 | @] 124 | [53| (B 182
— 96 | [[] 125 @] 154 M 183

144

PRINTS CHRS PRINTS CHRS | PRINTS CHRS PRINTS CHRS
™ 184 | (] 18 |[™ 188 | ®M] 190
o 185 | @] 187 | H] 189 | Mg 191

CODES 192-223 SAME AS 96-127
CODES 224-254 SAME AS 160-190
CODE 255 SAME AS 126

145

APPENDIX I: SCREEN DISPLAY CODES

The following chart lists all of the characters built into the Commodore character sets. It shows
which numbers should be POKEd into screen memory (locations 1024-2023) to get a desired
character. Also shown is which character corresponds to a number PEEKed from the screen.

Two character sets are available, but only one set at a time. This means that you cannot have
characters from one set on the screen at the same time you have characters from the other set
displayed. The sets are switched by holding down the and la keys

simultaneously. =

From BASIC, PRINT CHR$(142) will switch to upper case/graphics mode and PRINT CHR$(14)
switches to upper/lower case mode.

Any number on the chart may also be displayed in REVERSE. The reverse character code may be
obtained by adding 128 to the values shown.

SET1 SET2 POKE | SET1 SET2 POKE | SET1 SET2 POKE
@ 0 T t 20 (40
A a 1 u u 21) 41
B b 2 Vv v 22 * 42
C c 3 W w 23 + 43
D d 4 X X 24 , 44
E e 5 Y y 25 - 45
F f 6 Y4 z 26 . 46
G 9 7 (27 / 47
H h 8 £ 28 0 48
| i 9] 29 1 49
J j 10 1 30 2 50
K k 1 «— 31 3 51
L | 12 m 32 4 52
M m 13 ! 33 5 53
N n 14 " /| 6 54
o o 15 # 35 7 55
P p 16 $ 36 8 56
Q 77 % 37 | 9 57
R r 18 & 38 58
S s 19 ! 39 ; 59

146

SET2 POKE

SET 1

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

MEHOCHECAE =m0 DM O]

SET 2 POKE

SET 1

M T W O N O O S 8N a 0 ~
188583838558 93885883528388%5

D> 32 X > N =1/ N

w@OUBOERNOS

SPACE

ONXO#Ee B EEY

SET 2 POKE

SET 1

o
©

72

) W O N ©® O O r o T B O N ® O O N ™
5 333 8865383 BRK N N NNKNRKR®®D® © @

< m OO0 WuwWwozIT-—"X 493 Z 00 Ocaxcown

v -[Mg8000DOEBEHPNUONUD@ R

Codes from 128-255 are reversed images of codes 0-127.

147

APPENDIX J: SCREEN AND COLOR MEMORY MAPS

The following charts list which memory locations control placing characters on the screen, and
the locations used to change individual character colors, as well as showing character color
codes.

SCREEN MEMORY MAP

COLUMN
0 10 20 30 39

3072—— — % 0
3112 :
3152 ;
3192
3232 i —i
3272 i ;
3312

3392
3432
3472 i

3512 X

3562 : ;
3592 ! L
3632 il ; g !
3672 I i L)
3712 : -
3752 ! o
3792 —i
3832 :
3872 : 20
3912 ;]
3952 i
3992]
4032 il 2

148

COLOR MEMORY MAP

COLUMN
0 10 20 30 39

2087

B

N
N
5
@
-

=
Moy

g

R

g

24

3027

The actual values to change a character’s color are:

1 BLACK 9 ORANGE

2 WHITE 10 BROWN

3 RED 11 YELLOW-GREEN
4 CYAN 12 PINK

5 PURPLE 13 BLUE-GREEN

6 GREEN 14 Light BLUE

7 BLUE 15 DARK BLUE

8 YELLOW 16 Light GREEN

The luminance of the color is selected by multiplying the luminance value (O-7) by 16, and added
to the color. To make the character flash, add 128 to the color value also.

149

APPENDIX K: DERIVING MATHEMATICAL FUNCTIONS

Functions that are not intrinsic to BASIC 3.5 may be calculated as follows:

FUNCTION BASIC EQUIVALENT
SECANT SEC(X)=1/COS(X)
COSECANT CSC(X)=1/SIN(X)
COTANGENT COT(X)=1/TAN(X)
INVERSE SINE ARCSIN(X)=ATN(X/SQR(—=X*X+1))
INVERSE COSINE ARCCOS(X)=—ATN(X/SQR
(—X*X +1)) +7/2
INVERSE SECANT ARCSEC(X)=ATN(X/SQR(X*X—1))
INVERSE COSECANT ARCCSC(X)=ATN(X/SQR(X*X—1))
+(SGN(X)—1*7/2)
INVERSE COTANGENT ARCOT(X)=ATN(X)+ /2
HYPERBOLIC SINE SINH(X)=(EXP(X)— EXP(—X))/2
HYPERBOLIC COSINE COSH(X)=(EXP(X)+EXP(—X))/2
HYPERBOLIC TANGENT TANH(X)=EXP(—X)/(EXP(x)+EXP
(—X)*2+1
HYPERBOLIC SECANT SECH(X)=2/(EXP(X)+ EXP(— X))
HYPERBOLIC COSECANT CSCH(X)=2/(EXP(X)— EXP(— X))
HYPERBOLIC COTANGENT COTH(X)=EXP(— X)/(EXP(X)
—EXP(—X))*2+1
INVERSE HYPERBOLIC SINE ARCSINH(X)=LOG(X + SQR(X*X+1))
INVERSE HYPERBOLIC COSINE ARCCOSH(X)=LOG(X + SQR(X*X—1))
INVERSE HYPERBOLIC TANGENT ARCTANH(X)=LOG((1 +X)/(1 —X))/2
INVERSE HYPERBOLIC SECANT ARCSECH(X)=LOG((SQR
(=X*X+1) + 1)/X)
INVERSE HYPERBOLIC COSECANT ARCCSCH(X)=LOG((SGN(X)*SQR
(X*x + 1) /x)
INVERSE HYPERBOLIC COTAN- ARCCOTH(X)=LOG((X+1)/(x—1))/2
GENT

150

APPENDIX L: PROGRAMS TO TRY

5 GRAPHIC 3, 1: GRAPHIC 0, 1

10 INPUT "SHOULD I CLEAN UP MY MESS"; AS

26 INPUT "SHOULD I ROTATE"; BS

30 INPUT "SHOULD I VARY MOTIGN"; CS$.

40 INPUT "SHCULD I PICK THE START";D$

50 IF As$="Y" THEN DIM A(3,200)

60 DEF FNA(X)= INT(RKD(1) * X)

70 IF D$="Y" THEN X1=FNA(80)+80: X2=FRA(8G)+8C: Y1=FKZ(1(0C)+100

75 IF D$="Y" THEK Y2=FNA(100)+100

80 IF D$<>"Y" THEN X1=60: %2=8G: Y1=10GC: Y2=1(GG

90 GRAPHIC 3: FOR L=1 %0 3: CCLOK L, FRA(15)+2, FNA(8): LIXT

16C IF C1<1 THEN COLOR FNA(3)+1, FNA(15)+2, FNA(8): Cl= FL/(40)+2C
116 IF C2<>0 THEN 140: ELSE XA=FNA(1l)-5: XB=FKA(11)-S: YA=FNA(13)-€
115 YB=FEA(13)-6

120 IF C$="Y" THEN C2=FNA(10)+5

130 IF B$="Y" THEK XB=-XA: YE=-Y&

140 IF C3<1 THEN C=FNA(3)+l: C3=FNA(10)

145 IF A$="Y" THEN DRAW 0, A(O0,P), A(1l,P) TO A(2,P), B(3,P)

150 X1= X1+ XA: X2= X2+ XB: Y1= Y1+ YA: Y2= Y2+ Yk

1€C IF X1<0 OR X1>159 THEN XA= -XA: Xl= X1+XA

176 IF Xz<0 OR X2>15% TEBEN XB= -XB: X2= XZ+XB

180 IF Y1<0 OR Y1>199 THEN YA= -YZA: Yl= Y1+YhA

150 IF Y2<0 OR Y¥2>19% THEN ¥YB= -YB: Y2= Y2+YB

200 DRAW C, X1, Y1 TC X2, Y2

210 IF AS$="Y" THEN A(O0,P)= X1: A(1,P)=Yl: A(2,P)=X2: A(3,P)=Y2: P= P+l
215 IF A$="Y" THEN IFP>2CCTHENP=0

220 Cl= Cl-1: C2Z= C2-1: C3= C3-1: GCTO 100

SOUND EFFECTS
Wolf Whistle

10 VOL7

20 FORL=400TO800STEP20
30 SOUND1,L,3:NEXT

40 FORL=300TO600STEP40
50 SOUND1,L,3:NEXT

60 FORL=600TO300STEP-40
70 SOUND1,L,3:NEXT

Computer Maniac

10 VOL7

20 FORL=1TO1l00

30 SOUND1,INT(RND(Q)*500)+400,4
40 NEXT

151

Telephone

10
20
30
40
50
60
70
80

VOL7

FORL=1TO5
FORM=1TO60
SOUND1,466,1
SOUND1,1020,1
NEXT
FORZ=1T02000:NEXT
NEXT

Busy Signal

10
20
40
50
80

VOL7
FORL=1TO15
SOUND1,466,20
SOUND1,1020,15
NEXT

Bubbles

10
20
30
40
50
60
70
80
90

VOL7

GRAPHIC1,1

FORM=1TCS50

GOSUB80
SOUND1,900-R*20, (YR/2) +50
CIRCLE]l,X,Y,R,YR
NEXT:GRAPHICO:END

X=INT (RND(0) *280) +20
Y=INT (RND(0) *160) +20

100 R=INT(RND(0)*40)+5
110 YR=R/1.3
120 RETURN

152

Zap Beam

10 VOL7

20 FCRM=1TO 20

30 FORL=900TO850STEP-10
40 SOUND1,L,1

50 NEXT .

60 FORL=850TO900STEP10
70 SOUND1,L,1

80 NEXT

100 NEXT

Music Lines

10 VOL7

15 X1=0:Y1=0

20 GRAPHIC1,1

30 GETAS:IFAS=" "THENGRAPHICO:END
40 GOSUBS8O

45 FORL=1TODSTEP2

50 SOUND1,X*3,5

55 SOUND2,Y*3,5

60 DRAWL,X,Y

65 X=X+2*DX:Y=Y+2*DY

70 NEXT:GOTO30

80 X=X1:X1=INT (RND(0)*280)+20

90 Y=Y1:Y1=INT(RND(0)*160)+20
100 A=X1-X:B=Y1-Y:D=SQR (A*A+B*B)
110 DX=A/D:DY=B/D

120 RETURN

1563

APPENDIX M: BOOK LIST
BOOKS FOR COMMODORE PRODUCTS

Commodore Bookware

VIC 20 Programmer’s Reference Guide
Commodore 64 Programmer’s Reference Guide
Mastering Your VIC 20
Four VIC 20 Computer Books:

VIC Revealed, Nick Hampshire

VIC Games, Nick Hampshire

VIC Graphics, Nick Hampshire

Stimulating Simulations for the VIC, C. W. Engel

COMPUTE! Books

Programming The PET/CBM, R. West

Machine Language For Beginners

COMPUTE!’s First Book of VIC Games

Creating Arcade Games On The VIC

COMPUTE!’s First Book of Commodore 64 Games
COMPUTE!’s Reference Guide To 64 Graphics
Creating Arcade Games On The 64

DATAMOST INC.
Kids & The VIC, Edward H. Carlson

Dell Publishing Co., Inc.
Games for Your VIC 20, Alastair Gourlay

Dilithium Press

A PET for Kids, Sharon Boren

A PET in the Classroom: Activity Workbook

More Than 32 BASIC Programs for the Commodore 64, Tom Rugg, Phil
Feldman, Gene Moore

32 BASIC Programs for the PET Computer

ELCOMP Publishing, Inc.

Tricks for VICs, Sam D. Roberts
More on the 64, H. C. Wagner
The Great Book of Games (for the Commodore 64)

154

Hayden Book Co.

The 6502 Software Gourmet Guide & Cookbook, Robert Findley
| Speak BASIC to My VIC, Aubrey B. Jones, Jr.

Reston Publishing Company, Inc.

VIC BASIC: A User-Friendly Guide, Ramon Zamora, Don Inman, Bob
Albrecht, Dymax
25 Advanced Games for the PET/CBM, Larry Hatch

Sybex Computer Books

Your First VIC 20 Program, Rodney Zaks
Programming the 6502, Rodney Zaks
The VIC 20 Connection, James W. Coffron

155

INDEX

Abbreviations for BASIC statements 42, 130-132

Animation 52-54
Arrays 100, 112
Assigning data

DATA ... READ statements 111, 122

INPUT 43-45, 86, 116

GET 114

LET 117
AUTOmatic renumbering 103
BACKUP command 103
BASIC

abbreviations 42, 130-132

commands 99-108, 130-132

converting to Commodore BASIC 139

functions 99, 125-132
statements 99, 109-125, 130-132
Branching programs
GOSUB 8990, 115
GOTO 17,115
ON ... GOSUB/GOTO 90, 118
RETURN 123
Built-in software 14, 30
Calculations
addition 38
decimals 39
division 38
execution order 42
exponentiation 41
fractions 39
mathematical operators 38, 102
multiplication 38
parentheses 42
PRINT statement 38-41
relational operators 38, 102
scientific notation 42
subtraction 38
Cartridges
installing 4, 30-31
loading 30-31
Cassette tapes
recorder 32-33
LOADing 32, 106
SAVEing 33, 108
software 32
CHAR statement 60, 82, 109
CHRS$ codes 143-145
CHR$ function 92, 128
Clearing
CLR command 110, 116
graphics modes 57, 116
graphics screen 57, 116
memory 3
screen 11,23
CLOSE stlatement 110

156

CLR command 110, 116
CMD command 110
Color

areas 54

background 54, 83

border 54, 83

changing 11-12, 27, 48, 54-55, 83

COLOR command 17, 55, 111

filling areas 61, 109, 119

keys 11-12

luminance 55, 83

memory map 149

PAINT 65

screen 54-55

source 54-55, 109, 111
Commands (See BASIC commands)
Commas

in PRINT statements 25-26

separating numbers 39

vs. semicolons 25-26
Commodore key 11-12, 48
Connecting the computer 3-7
CONT command 104
Control (CTRL) key 11, 48
COPY statement 111
Copying diskettes 103
Cursor

controlling movement 10, 82

cursor keys 10, 20

in PRINT statements 43
Debugging

CONT 104

DS$ 34, 36

STOP 124

RESUME 123

TRAP 91, 124
DEF FN statement 112, 151
Defining function keys 14-15, 92, 105

Defining functions in programs 112, 151

Delete

command 104

editing 13, 21

files from a diskette 108

key 10, 21, 41

letters in a word 10, 21

lines in a program 19, 104
DIM statement 112
Dimensioning an array 112
Direct mode (See Immediate mode)
DIRECTORY command 36, 104
Diskettes

COPY statement 111

DIRECTORY command 36, 104

disk drives 4, 34

DLOAD command 34, 104
DS$ function 34, 36, 96-98, 100
duplicating 103, 111
formatting 35, 105
HEADER command 35
listing a directory 36, 104
loading 34
SAVEing 36, 105
table of contents 36, 104
DLOAD 34, 104
DOPEN 34
DS$ 34, 36, 96-98, 100
DSAVE 36, 105
Duplicating diskettes 103
Editing
INSert key 10, 21, 41
INSert mode 13, 21
DELete key 10, 21, 41
DELete command 104
RENUMBER command 103, 107
END statement 113
Errors
Debugging statements 91
Disk errors 34, 36, 96-98
Messages explained 94-98
ESCape functions 13
ESCape key 13
EXP function 125
Flash mode
accessing 12
keys 12
using in PRINT statements 27-28
FOR .. TO .. STEP 46, 76-77, 114
Formatting diskettes 35, 105
Formatting output
PRINT USING 120-121
PUDEF 122
print zones 25-26
punctuation 25-26, 83, 86
Function keys 14-15, 92, 105
GET statement 114
GETKEY statement 114
GET# statement 115
GOSUB 8990, 115
GOTO 17,115
Graphics
BOX 61, 109
CIRCLE 62-65, 80-82, 110
clearing 57
COLOR 17,55
DRAW 58, 113
exercises 49-66
GRAPHIC command 57, 116
high resolution 56-65
keys 13-14, 49-53
modes 9-11, 57, 65-66

multicolor modes 57, 65-66
PAINT 61, 119

printing graphic symbols 9-11, 22, 85

SCNCLR 57, 80-81

uppercase/graphic mode 9-11
HEADER command 35, 105
HELP key 14-15, 105
High resolution graphics 56-65
IF ... THEN ... ELSE 116
Immediate mode 41
INPUT statement 43-45, 86, 116
Insert

editing 13, 21

key 10, 21, 41

mode 13, 21
Insert mode

accessing 10, 13, 21

key 10, 21
Installing the computer 3-7
INSTR function 88, 126
INT function 79, 126, 127
Integer variables 43, 99-100
Joy sticks 4, 126
KEY command 14-15, 92, 105
Key redefining 14-15, 92, 105
Keyboard

function keys 14-15

special keys 9-14
LEFTS$ function 88-89, 128
LET statement 117
LIST statement 19, 106
Loading

cartridges 30-31

cassettes 32, 106

diskettes 34, 104

DLOAD command 34, 104

LOAD command 32, 106
LOCATE

command 103, 117
Loops

DO ... LOOP ... WHILE/UNTIL 113

GOSUB 89-90, 115
GOTO 17, 115

FOR ... TO ... STEP 46, 76-77, 114

IF ... THEN ... ELSE 116
ON ... GOSUB/GOTO 90, 118
Luminance 55, 83, 149

Machine Language Monitor 117, 133-138

Mathematical functions 150
Mathematical operators 38, 102
Memory maps 140-141, 148-149
MID$ function 88, 128, 139
Modems 5, 36
Modes

flash 12

graphics 54, 57

157

insert 13, 21
multicolor 57, 65-66
quote 13
reverse 12-13, 27-28
uppercase/graphic 9-11
upper/lowercase mode 9-11
Monitor
connecting to computer 6
machine language 117, 133-138
lAusic
duration of notes 70
SOUND statement 69-70, 142
voices 69
volume 69-70, 125
NEW command 17, 107
NEXT statement 117
Numbers
calculating 38-44
exponentiation 41
execution order in multiple calculations 42
mathematical operators 38, 102
pi 39
relational operators 38, 102
signs (+ and —) 38
ON ... GOSUB 90, 118
ON ... GOTO 118
OPEN command 118
PEEK function 126
Pi 39, 129
Pixel cursor
in graphics modes 103, 117
LOCATE statement 103, 117
positioning 103, 117, 126
POKE statement 119
PRINT
calculations 38
displaying messages 17, 119
formatting output 25-26, 60, 82, 85-86, 109, 119
in immediate mode 41
in program mode 41
print zones 25-26, 85
punctuation 25-26
PRINT USING 120-121
PRINT# USING 120-121
Print zones 25-26
Program flow control (See Loops)
Programming
BASIC commands 99-108
BASIC functions 99, 125-132
BASIC statements 99, 109-125
function keys 14-15, 92, 105
machine language monitor 133-138
mode 41
PUDEF 122
Quote mode
accessing 9, 20
keys 9

158

using in PRINT statements 17, 20, 23
Random numbers 78-79, 127
READ statement 122
Relational operators 38, 102
REM statement 122
RENAME command 122
RENUMBERIng program lines 103, 107
Reset button 3
RESTORE 122
RESUME 123, 124
Resuming program display 11, 123
RETURN 9, 123
Reverse mode

accessing 12

keys 12-13

using in PRINT statements 27-28
RIGHTS$ function 88, 128
RND function 78-79, 127
RS-232 port 4
RUN command 10, 107
SAVE command 33, 108
Saving programs

cassettes 33, 108

disk errors 34, 36, 96-98

diskettes 36

DSAVE 36, 105

SAVE 33, 108
SCNCLR statement 57, 80-81
SCRATCH command 108
Screen

clearing 11, 23, 57

clearing graphics modes 57, 80-81

display codes 146-147

LIST command 19, 106

memory map 148

program display 25

resuming display 11, 123

size 23-24

slowing display 11

windowing 13
Screen area numbers chart 148
Semicolons

in PRINT statements 25-26, 84

vs. commas 25-26
Setting up the computer 3-7
Slowing program display 11
Software

built-in 14, 30

cartridges 30

cassettes 30

diskettes 30

LOADing 30-34

saving your own 33, 36
Sound effects 69, 151-153
SPC function 129
STOP statement 124
Stopping program display 10

String functions 128
Subroutines 89-90, 115, 123
SYS statement 124
TAB function 129
Text
in graphics 60
in PRINT statements 17, 39
string functions 128
TI$ function 100
TRAP statement 91, 124
Troubleshooting 7
TV
antenna types 5
channel selection 3, 6
hookup 5-7
switch box 2-6
Uppercase/graphics modes
accessing 11
printing graphics 9-11
SHIFT key 9
Upper/lowercase graphics
accessing 11
printing graphics 9-11
SHIFT key 9
Variables
floating point 43, 99-100
integer 43, 99-100
text string 43, 99-100
types 43, 99-100
see also Assigning data
VERIFY command 108
Voices 69
Volume 69-70, 125
WAIT statement 125
Windowing 13

159

The Commodore 264 is the first home computer to offer
so much built-in practical computing power... . for beginners
as well as experts. Word processing, financial calculations,
home budgets, small business accounting, electronic filing
and telecommunications are just a few of the hundreds of
applications available for your Commodore 264.

Your Commodore 264 is also a great programming
computer, with more than 75 BASIC commands that include
easy to use graphics, sound, color, and editing features.
There’s also a built-in machine language monitor.

Your Commodore 264 is fun, practical, and loaded with
superior features:

® 64K RAM (60K available for BASIC programming)

o Optional BUILT-IN software

® 128 colors

® Screen window capability

e Full typewriter-style keyboard

e HELP key

® 8 programmed function keys that you can easily

reprogram

® Four separate cursor keys

e Four graphics modes, including high resolution graphics

® Easy graphics plotting commands

e Over 75 BASIC commands

e Compatibility with most Commodore 64 and VIC 20

peripherals

In addition, you'll find a variety of practical and entertaining
software for your Commodore 264 already available from
your Commodore dealer. This software selection includes
the easy-to-use packages you can buy built into your
Commodore 264, or on cartridges, disks, or tapes.

This User’s Guide gives you an easy to follow, step-by-
step introduction to the Commodore 264. For more advanced
details, ask your Commodore dealer or local bookstore
about THE COMMODORE 264 REFERENCE GUIDE.

r commodore
COMPUTERS

brought to you by

http://commaoadore.international/

commodore international historical society

http://commodore.international/

