
A Friendly Introduction to Your 1541 Disk Drive

t commodore

COMPUTER

USER'S GUIDE STATEMENT

'This equipment generates and uses radio frequency energy. If it is

not properly installed and used in strict accordance with the manufac

turer's instructions, this equipment may interfere with radio and tele

vision reception. This machine has been tested and found to comply

with the limits for a Class B computing device peripheral in accord

ance with the specifications in Subpart J of Part 15 of FCC Rules,

which are designed to provide reasonable protection against such

interference in a residential installation. If you suspect interference,

you can test this equipment by turning it off and on. If you determine

that there is interference with radio or television reception, try one

or more of the following measures to correct it:

• reorient the receiving antenna

• move the equipment away from the receiver

• change the relative positions of the equipment and the receiver

• plug the equipment into a different outlet so that the equipment

and the receiver are on different branch circuits.

If necessary, consult your Commodore dealer or an experienced radio/

television technician for additional suggestions. You may also wish to

consult the following booklet, which was prepared by the Federal

Communications Commission:

"How to Identify and Resolve Radio-TV Interference Problems".

This booklet is available from the U.S. Government Printing Office,

Washington, D.C. 20402, Stock No. 004-000-00345-4.

COMMODORE

1541

USER'S GUIDE

A Friendly Introduction to Your 1541 Disk Drive

COMPUTER

The information in this manual has been reviewed and is believed to be entirely

reliable. No responsibility, however, is assumed for inaccuracies. The material in this

manual is for information purposes only, and is subject to change without notice.

©Commodore Business Machines Electronics Ltd., September 1982

"All rights reserved."

Table of Contents Page

1. GENERAL DESCRIPTION 1

2. UNPACKING AND CONNECTING 4

Contents of Box 4

Connection of Cables 5

Powering On 6

Insertion of Diskette : 7

Using with VIC 20 or Commodore 64 7

3. USING PROGRAMS 8

Loading Pre-packaged Software 8

LOAD 8

Directory of Disk 9

Pattern Matching & Wild Cards 11

SAVE 12

SAVE and replace 12

VERIFY 13

DOS Support Program 13

4. DISK COMMANDS 14

OPEN AND PRINT# 14

NEW 15

COPY 16

RENAME 16

SCRATCH 17

INITIALIZE 17

VALIDATE 17

DUPLICATE 18

Reading the Error Channel 18

CLOSE 19

5. SEQUENTIAL FILES 20

OPEN 20

PRINT # and INPUT# 21

GET# 23

Reading the Directory 24

6. RANDOM FILES 28

Opening a channel for random access data 29

BLOCK-READ 29

BLOCK-WRITE 30

BLOCK-ALLOCATE 30

BLOCK-FREE 31

BUFFER-POINTER 33

USER1 and USER2 34

7. RELATIVE FILES 36

Creating a relative file 36

Using relative files 38

Create a relative file 43

Summary 43

Modifying the program , 44

8. PROGRAMMING THE DISK CONTROLLER 45

BLOCK-EXECUTE 45

MEMORY-READ 45

MEMORY-WRITE 46

MEMORY-EXECUTE 46

USER Commands 47

9. CHANGING THE DISK DEVICE NUMBER 48

Software Method 48

Hardware Method 49

10. ASSEMBLY LANGUAGE AND THE 1541 50

Appendices

A. Disk Command Summary ...51

B. Error Messages 52

C. Demonstration Disk Programs 57

D. Disk Formats Tables 64

1. GENERAL DESCRIPTION

INTRODUCTION

Welcome to the fastest, easiest, and most efficient tiling system available for your

Commodore 64 or VIC 20 computer, your 1541 DISK DRIVE. This manual has been

designed to show you how to get the most from your drive, whether you're a beginner

or an advanced professional.

If you are a beginner, the first few chapters will help you through the basics of

disk drive installation and operation. As your skill and programming knowledge im

proves, you will find more uses for your disk drive and the more advanced chapters of

this manual will become much more valuable.

If you're a professional, this reference guide will show you how to put the 1541

through its paces to perform just about all the disk drive jobs you can think of.

No matter what level of expertise you have, your 1541 disk drive will dramatically

improve the overall capabilities of your computer system.

Before you get to the details of 1541 operation, you should be aware of a few im

portant points. This manual is a REFERENCE GUIDE, which means that unless the

information you seek directly pertains to the disk or disk drive you will have to use

your Commodore 64 or VIC 20 User's Guides and Programmer's Reference Guides to

find programming information. In addition, even though we give you step-by-step in

structions for each operation, you should become familiar with BASIC and the in

structions (called commands) that help you operate your disks and drives. However, if

you just want to use your disk drive unit to load and save prepackaged software, we've

included an easy and brief section on doing just that.

Now . . . let's get on with the general information.

The commands for the disk drive come in several levels of sophistication. Starting

in chapter three, you can learn how the command that allow you to SAVE and LOAD

programs with the disk work. Chapter four teaches you how commands are sent to the

disk, and introduces the disk maintenance commands.

Chapter five tells you how to work with SEQuential data files. These are very

similar to their counterparts on tape (but much faster). Chapter six introduces the com

mands that allow you to work with random files, to access any piece of data on the

disk, and how you organize the diskette into tracks and blocks. Chapter seven

describes the special relative files. RELative files are the best method of storing data

bases, especially when they are used along with sequential files.

Chapter eight describes methods for programming the disk controller circuits at

the machine language level. And the final chapter shows you how to change the disk

device number, by cutting a line inside the drive unit or through software.

Remember, you don't really need to learn everything in this book all at once. The

first four chapters are enough to get you going, and the next couple are enough for

most operations. Getting to know your disk drive will reward you in many ways —

speed of operation, reliability, and much more flexibility in your data processing

capabilities.

SPECIFICATIONS

This disk drive allows you to store up to 144 different programs and/or data files

on a single mini-floppy diskette, for a maximum of over 174,000 bytes worth of infor

mation storage.

Included in the drive is circuitry for both the disk controller and a complete disk

operating system, a total of 16K of ROM and 2K of RAM memory. This circuitry

makes your Commodore 1541 disk drive an "intelligent" device. This means it does its

own processing without taking any memory away from your Commodore 64 or VIC 20

computer. The disk uses a "pipeline" software system. The "pipeline" makes the disk

able to process commands while the computer is performing other jobs. This

dramatically improves the overall throughput (input and outpu*) of the system.

Diskettes that you create in this disk drive are read and write compatible with

Commodore 4040 and 2031 disk drives. Therefore, diskettes can be used inter

changeably on any of these systems. In addition, this drive can read programs created

on the older Commodore 2040 drives.

The 1541 disk drive contains a dual "serial bus" interface. This bus was specially

created by Commodore. The signals of this bus resemble the parallel IEEE-488 inter

face used on Commodore PET computers, except that only one wire is used to com

municate data instead of eight. The two ports at the rear of the drive allows more than

one device to share the serial bus at the same time. This is accomplished by "daisy-

chaining" the devices together, each plugged into the next. Up to five disk drives and

one printer can share the bus simultaneously.

Figure 1.1 Specifications VIC 1540/1541 Single Drive Floppy Disk

STORAGE

Total capacity

Sequential

Relative

Directory entries

Sectors per track

Bytes per sector

Tracks

Blocks

IC's:

6502

6522 (2)

Buffer

2114(4)

PHYSICAL:

Dimensions

Height

Width

Depth

Electrical:

Power Requirements

Voltage

Frequency

Power

MEDIA:

Diskettes

174848 bytes per diskette

168656 bytes per diskette

167132 bytes per diskette

65535 records per file

144 per diskette

17 to 21

256

35

683 (664 blocks free)

microprocessor

I/O, internal timers

2KRAM

97 mm

200 mm

374 mm

100, 120, 220, or 240 VAC

50 or 60 Hertz

25 Watts

Standard mini 5!4", single sided,

single density

2. UNPACKING AND CONNECTING

CONTENTS OF BOX

Included with the 1541 disk drive unit, you should find a gray power cable, black

serial bus cable, this manual, and a demonstration diskette. The power cable has a con

nection for the back of the disk drive on one end, and for a grounded (three-prong)

electrical outlet on the other. The serial bus cable is exactly the same on both ends. It

has a 6-pin DIN plug which attaches to the VIC 20, Commodore 64 or another disk

drive.

Please, don't hook up anything until you've completed the following section!

1 Fig 1.A

Qs commodorG 1541

\

\ DRIVE INDICATER (RED LED)
LIGHT: ACTIVE

FLASH: ERROR
POWER INDICATER

Fig 1. Front Panel (green led) light: power on

FiglJB

k DRIVE INDICATER (RED LED) LIGHT: ACTIVE

FLASH: ERROR

POWER INDICATER

(GREEN LED) LIGHT: POWER ON

Fig 2. Back Panel power switch

/ "
SERIAL BUS

FUSE/HOLDER

CONNECTION OF CABLES

Your first step is to take the power cable and insert it into the back of the disk

drive (see figure 2). It won't go in if you try to put it in upside down. Once it's in the

drive, plug the other end into the electrical outlet. If the disk drive makes any sound at

this time, please turn it off using the switch on the back! Don't plug any other cables

into the disk drive if the power is on.

Next, take the serial bus cable and attach it to either one of the serial bus sockets

in the rear of the drive. Turn off the computer, and plug the other end of the cable into

the back of the computer. That's all there is to it!

If you have a printer, or any additional disk drives, attach the cables into the se

cond serial bus port (see figure 3). For directions on using multiple drives at one time,

read chapter 9. If you are a first-time user with more than one drive, start working with

only one drive until you're comfortable with the unit.

VIC 1541

Single Drive

Floppy Disk

Commodore 64 or VIC20

Personal Computer

Fig 3. Floppy Disk Hookup Printer

POWERING ON

When you have all the devices hooked together, it's time to start turning on the

power. It is important that you turn on the devices in the correct order. The computer

should always be turned on last. As long as the computer is the last one to be turned

on, everything will be OK.

First, make sure that you've removed all diskettes from the disk drives

before powering on.

After all the other devices have been turned on, only then is it safe to turn on the

computer. AU the other devices will go through their starting sequences. The printer's

motor goes on, with the print head moving halfway across the line and back again. The

1541 disk drive will have its green light on, and then the red drive/error light will blink,

while your TV screen forms the starting picture.

Once the red drive/error light has stopped flashing on the drive, it is safe to begin

working with it.

WRITE

PROTECT

NOTCH

WHEN COVERED, DISKETTE

CONTENTS CANNOT BE

ALTERED

Fig.4. Position for Diskette Insertion

INSERTION OF DISKETTE

There is different way to open and close the drive door, and insertion/

removal the diskette.

TYPE1: figure 1.A

To open the door on the drive, simply press the door catch lightly, and the

door will pop open. If there is a diskette in the drive, it is ejected by a small

spring. Take the diskette to be inserted, and place it in the drive face-up with the

large opening going in first and write-protect notch to the left (covered with tape

in the demonstration disk) (see figure 4).

Press it in gently, and when the diskette is in all the way, you will feel a click

and the diskette will not spring out. Close the drive door by pulling downward

until the latch clicks into place. Now you are ready to begin working with the

diskette.

TYPE2: figure l.B

To open the door on the drive, simply turn the door lever counter-clockwise.

Take the diskette to be inserted, and place it in the drive face-up with the large

opening going in first and write-protect notch to the left (covered with tape in

the demonstration disk) (see figure 4).

Close the drive door by turning clockwise direction until the latch clicks

into place. Now you are ready to begin working with the disk.

Remember to always remove the diskette before the drive is turned off or on.

Never remove the diskette when the red drive light in on! Data can be destroyed by the

drive at this time!

USING WITH A VIC 20 OR COMMODORE 64

The 1541 Disk Drive can work with either the VIC 20 or Commodore 64 com

puters. However, each computer has different requirements for speed of incoming

data. Therefore, there is a software switch for selecting which computer's speed to use.

The drive starts out ready for a Commodore 64. To switch to VIC 20 speed, the follow

ing comand must be sent after the drive is started (power-on or through software):

OPEN 15, 8, 15, "UI-": CLOSE 15

To return the disk drive to Commodore 64 speed, use this command:

OPEN 15, 8, 15, "UI + ": CLOSE 15

More about using this type of command is in chapter 4, with a detailed explana

tion of the U (user) commands in chapter 8.

3. USING PROGRAMS

LOADING PREPACKAGED PROGRAMS

For those of you interested in using only prepackaged programs available on car

tridges, cassette, or disk, here's all you have to do:

Using your disk drive, carefully insert the preprogrammed disk so that the label on

the disk is facing up and is closest to you. Look for a little notch on the disk (it might

be covered with a little piece of tape). If you're inserting the disk properly, the notch

will be on the left side. Once the disk is inside, close the protective gate by pushing in

on the level. Now type LOAD"PROGRAM NAME", 8 and hit

The disk will make noise and your screen will say:

SEARCHING FOR PROGRAM NAME

LOADING

READY

When the word READY appears, just type RUN, and your prepackaged software

is ready to use.

LOAD

The BASIC commands used with programs on the disk drive are the same as the

commands used on the Commodore DATASSETTE™ recorder. There are a few extra

commands available for use with disks, however.

First of all, the program name must be given with each command. On a

DATASSETTE™, yOu could omit the program name in order to just LOAD the first

program there. On disk, since there are many different programs that are equally ac

cessible, the program name must be used to tell the disk drive what to do. In addition,

the disk drive's device number must be specified. If no device number is listed, the

computer assumes the program is on tape.

FORMAT FOR THE LOAD COMMAND:

LOAD name$,device#, command#

The program name is a string, that is, either a name in quotes or the contents of a

given string variable. Some valid names are: "HELLO", "PROGRAM #1", A$,

NAMES.

The device# is preset on the circuit board to be #8. If you have more than one

drive, see chapter 9 on how to change the device number. This book assumes that

you're using device number 8 for the disk drive.

8

The command# is optional. If not given, or zero, the program is LOADed nor

mally, that is, beginning at the start of your available memory for BASIC programs. If

the number is 1, the program will be LOADed at exactly the same memory locations

from which it came. In the case of computers with different memory configurations,

like VICs with 5K, 8K, or more memory, the start of BASIC memory is in different

places. The command# 0 permits BASIC programs to LOAD normally. Command* 1

is used mainly for machine language, character sets, and other memory dependent

functions.

EXAMPLES

LOAD "TEST", 8

LOAD "Program #1", 8

LQAD.AS, J,K

LOAD "Mach Lang", 8, 1

NOTE: You can use variables to represent device numbers, commands, and

strings, as long as you've previously defined them in your program.

DIRECTORY OF DISKETTE

The DATASSETTE™ tape deck is a sequential device. It can only read from the

beginning of the tape to the end, without skipping around the tape and without the

capability of going backward or recording over old data.

Your disk drive is a random access device. The read/write head of the disk can go

to any spot on the disk and access a single block of data which holds up to 256 bytes of

information. There are a total of 683 blocks on a single diskette.

Fortunately, you don't really have to worry about individual blocks of data.

There is a program in the disk drive called the Disk Operating System, or the DOS.

This program keeps track of the blocks for you. It organizes them into a Block

Availability Map, or BAM, and a directory.

The Block Availability Map is simply a checklist of all 683 blocks on the disk. It is

stored in the middle of the diskette, halfway between the center hub and the outer rim.

Every time a program is SAVEd or a data file is CLOSEd, the BAM is updated with

the list of blocks used up.

The directory is a list of all programs and other files stored on the disk. It is

physically located right next to the BAM. There are 144 entries available in the direc

tory, consisting of information like file name and type, a list of blocks used, and the

starting block. The directory is automatically updated every time a program is SAVEd

9

or a file is OPENed for writing. BEWARE: the BAM isn't updated until the file is

CLOSEd, even though the directory changes right away. If a file isn't CLOSEd pro

perly, all data in that Hie will probably be lost.

The directory can be LOADed into your memory just like a BASIC program.

Place the diskette in the drive, and type the following command:

LOAD "$", 8

The computer responds with:

SEARCHING FOR S

FOUND S

LOADING

READY

Now the directory is in your computer's memory. Type LIST, and you'll see the

directory displayed on the screen. To print the directory on your printer, type the

following command line (in this example your printer is plugged in as device# 4):

OPEN 4,4: CMD 4: LIST

NOTE: When using CMD, the file must be closed using the command PRINT#

4: CLOSE 4. See the VIC 1525/1515 printer manual for detailed explanation.

To read the directory without LOADing it into your memory, see the section later

in this chapter on the DOS Support Program. In addition, to examine the directory

from inside a BASIC program, see the section in chapter 5 that deals with the GET#

statement.

10

PATTERN MATCHING AND WILD CARDS

When using the tape deck, you can LOAD any program starting with certain let

ters just by leaving off any following letters. Thus, the command LOAD "T" will find

the first program on the tape beginning with the letter T. And LOAD "HELLO" will

find the first program beginning with the letters HELLO, like "HELLO THERE."

When using the disk, this option is called pattern matching, and there is a special

character in the file name used to designate this. The asterisk (♦) character

following any program name tells the drive you want to find any program start
ing with that name.

FORMAT FOR PATTERN MATCHING: jCan Be A String
Variable Or The

LOAD name$ + "♦", 8 ^^\Name Inside Quotes)

In other words, if you want to LOAD the first program on the disk starting with

the letter T, use the command LOAD "T*", 8.

If only the "* is used for the name, the last program accessed on the disk is the

one LOADed. If no program has yet been LOADed, the first one listed in the directory

is the one used.

You are probably familiar with the concept of wild cards in poker where one card

can replace any other card needed. On your 1541, the question mark (?) can be used as

a wild card on the disk. The program name on the disk is compared to the name in the

LOAD command, but any characters where there is a question mark in the name aren't

checked.

For instance, when the command LOAD "T?NT", 8 is given, programs that

match include TINT, TENT, etc.

When LOADing the directory of the disk, pattern matching and wild cards can be

used to check for a list of specific programs. If you gave the command LOAD

"$0:TEST", only the program TEST would appear in the directory (if present on the

disk). The command LOAD "$0:T*" would give you a directory of all programs

beginning with the letter T. And LOAD "$0:T?ST" would give you all the programs

with 4-letter names having the first letter of T and the third and fourth letters ST.

LOAD "$0:T?ST*" would give names of any length with the correct first, third, and

fourth letters.

11

SAVE

To SAVE a program to the diskette, all that is needed is to add the device number

after the program name. Just like the SAVE command for the tape deck, the device

number can be followed by a command number, to prevent the automatic re-location

on LOADing (see the section on the LOAD command, above).

FORMAT FOR THE SAVE COMMAND:

SAVE name$, device#, command#

See the LOAD command (page 10) for an explanation of the parameters device*

and command#.

When you tell the disk drive to SAVE a program, the DOS must take several

steps. First, it looks at the directory to see if a program with that name already exists.

Next it checks to see that there is a directory entry available for the name. Then it

checks the BAM to see if there are enough blocks in which to store the program. If

everything is OK up to this point, the program is stored. If not, the error light will

flash.

SAVE AND REPLACE

If a program already exists on the disk, it is often necessary to make a change and

re-SAVE it onto the disk. In this case, it would be inconvenient to have to erase the old

version of the program and then SAVE it.

If the first characters of the program name are the "@" sign followed by a 0 and

a colon (:), the DOS knows to replace any old program that has that name with the

program that is now in the computer's memory. The drive checks the directory to find

the old program, then it marks that entry as deleted, and it next creates a new entry

with the same name. Finally, the program is stored normally.

FORMAT FOR SAVE WITH REPLACE:

SAVE "@0:" + name$, device#, command#

For example, if a file was called TEST, the SAVE and replace command would be

SAVE "@0: TEST",8. If the name is in A$, the command is SAVE A$ + "@0:

TEST",8.

The reason for the 0: is to keep compatibility with other Commodore disk

drive units which have more than one drive built in. In that case, the number 0

or 1 is used to specify which drive is being used.

12

VERIFY

The VERIFY command works to check the program currently in memory against

the program on disk. You must include a device# with the VERIFY command. The

computer does a byte-by-byte comparison of the program, including line links —

which may be different for different memory configurations. For instance, if a pro

gram was SAVEd to disk from a 5K VIC 20, and re-LOADed on an 8K machine, it

wouldn't VERIFY properly because the links point to different memory locations.

FORMAT FOR VERIFY COMMAND:

VERIFY name$, device#

DOS SUPPORT PROGRAM

On your demonstration disk, there may be a program called DOS SUPPORT.

This program, also called a wedge, allows you to use many disk commands more easily

(different wedges are used for the VIC 20 and the Commodore 64). Just LOAD the

program and RUN it. It automatically sets itself up and erases itself when it's finished.

You'll have a few hundred less bytes to work with when this program is running, but

you'll also have a handy way to send the disk commands.

As a result of the DOS Support, the "/" key now takes the place of the LOAD

command. Just hit the slash followed by the program name, and the program is

LOADed. When you use this method, you don't need to use the LOAD command or

the comma 8.

The "@" and " >" keys are used to send commands to the disk drive. If you

type @$ (or > $), the directory of the disk is displayed on the screen, without

LOADing into your memory! These keys also take the place of the PRINT# (see

chapter 4) to send commands listed in the next chapter.

To read the error channel of the disk (when the red error light is blinking), just hit

either the @ or the > and hit RETURN Key. The complete error message is dis

played to you: message number, text, and track and block numbers.

13

4. DISK COMMANDS

OPEN AND PRINT #

Up 'til now, you have explored the simple ways of dealing with the disk drive. In

order to communicate with the disk drive more fully, you have to touch on the OPEN

and PRINT# statements in BASIC (more details of these commands are available in

your VIC 20 or Commodore 64 User's Guide or Programmer's Reference Guide). You

may be familiar with their use with data Hies on cassette tape, where the OPEN state

ment creates the file and the PRINT# statement fills the file with data. They can be

used the same way with the disk, as you will see in the next chapter. But they can also

be used to set up a command channel. The command channel lets you exchange infor

mation between the computer and the disk drive.

FORMAT FOR THE OPEN STATEMENT:

OPEN file#, device#, channel#, text$

The file# can be any number from 1 to 255. This number is used throughout the

program to identify which file is being accessed. But numbers greater than 127 should

be avoided, because they cause the PRINT# statement to generate a linefeed after the

return character. These numbers are really meant to be used with non-standard

printers.

The device# of the disk is usually 8.

The channel* can be any number from 2 to 15. These refer to a channel used to

communicate with the disk, and channels numbered 0 and 1 are reserved for the

operating system to use for LOADing and SAVEing. Channels 2 through 14 can be

used for data to files, and 15 is the command channel.

The text$ is a string that is PRINTed to the file, as if with a PRINT# statement.

This is handy for sending a single command to the channel.

EXAMPLES OF OPEN STATEMENTS:

OPEN 15, 8, 15

OPEN 2, 8,

OPEN A, B, C, Z$

FILE#

DEVICE#

COMMAND CHANNEL

COMMAND$(text$)

14

The PRINT# command works exactly like a PRINT statement, except that the

data goes to a device other than the screen, in this case to the disk drive. When used

with a data channel, the PRINT# sends information into a buffer in the disk drive,

which LOADs it onto the diskette. When PRINT# is used with the command channel,

it sends commands to the disk drive.

FORMAT FOR SENDING DISK COMMANDS:

OPEN 15, 8, 15, commands

or

PRINT# 15, commands

NEW

This command is necessary when using a diskette for the first time. The NEW

command erases the entire diskette, it puts timing and block markers on the diskette

and creates the directory and BAM. The NEW command can also be used to clear out

the directory of an already-formatted diskette. This is faster than re-formatting the

whole disk.

FORMAT FOR THE NEW COMMAND TO FORMAT DISK:

PRINT#15, "NEW:name,id"

or abbreviated as

PRINT#15, "N:name,id"

FORMAT FOR THE NEW COMMAND TO CLEAR DIRECTORY:

PRINT#15, "N:name"

The name goes in the directory as the name of the entire disk. This only appears

when the directory is listed. The ID code is any 2 characters, and they are placed not

only on the directory but on every block throughout the diskette. That way, if you

carelessly replace diskettes while writing data, the drive will know by checking the ID

that something is wrong.

15

COPY

This command allows you to make a copy of any program or file on the disk

drive. It won't copy from one drive to a different one (except in the case of dual drives

like the 4040), but it can duplicate a program under another name on the drive.

FORMAT FOR THE COPY COMMAND:

PRINT# 15, "COPY:newfile= oldfile"

or abbreviated as

PRINT# 15, "C:newfile= oldfile"

The COPY command can also be used to combine two through four files on the

disk.

FORMAT FOR COPY TO COMBINE FILES:

PRINT# 15, "C:newffle= oldfilel, oldfile2, oldfile3, oldfile4"

EXAMPLES OF COPY COMMAND:

PRINT# 15, "C:BACKUP= ORIGINAL"

PRINT# 15, "C:MASTERFILE= NAME, ADDRESS, PHONES"

RENAME

This command allows you to change the name of a file once it is in the disk direc

tory. This is a fast operation, since only the name in the directory must be changed.

FORMAT FOR RENAME COMMAND:

PRINT# 15, "RENAME:newname=oldname"

or abbreviated as

PRINT# 15, "R:newname=oldname"

EXAMPLE OF RENAME COMMAND:

PRINT#15, "R:MYRA=MYRON"

The RENAME command will not work on any files that are currently OPEN.

16

SCRATCH

This command allows you to erase unwanted files and programs from the disk,

which then makes the blocks available for new information. You can erase programs

one at a time or in groups by using pattern matching and or wild cards.

FORMAT FOR SCRATCH COMMAND

PRINT# 15, "SCRATCH:name"

or abbreviated as

PRINT# 15, "S:name"

If you check the error channel after a scratch operation (see below), the number

usually reserved for the track number now tells you how many files were scratched. For

example, if your directory contains the programs KNOW and GNAW, and you use the

command PRINT# 15, "S:?N?W", you will scratch both programs. If the directory

contains TEST, TRAIN, TRUCK, and TAIL, and you command the disk to PRINT#

15, "S:T*", you will erase all four of these programs.

INITIALIZE

At times, an error condition on the disk will prevent you from performing some

operation you want to do. The INITIALIZE command returns the disk drive to the

same state as when powered up. You must be careful to re-match the drive to the com

puter (see chapter 2).

FORMAT FOR INITIALIZE COMMAND:

PRINT# 15, "INITIALIZE"

or abbreviated as

PRINT# 15, "I"

VALIDATE

After a diskette has been in use for some time, the directory can become

disorganized. When programs have been repeatedly SAVEd and SCRATCHed, they

may leave numerous small gaps on the disk, a block here and a few blocks there. These

blocks never get used because they are too small to be useful. The VALIDATE com

mand will go in and re-organize your diskette so that you can get the most from the

available space.

Also, there may be data files that were OPENed but never properly CLOSEd.

This command will collect all blocks taken by such files and make them available to the

drive, since the files are unusable at that point.

17

There is a danger in using this command. When using random files (see chapter 6),

blocks allocated will be de-allocated by this command. Therefore, this command

should never be used with a diskette that uses random files.

FORMAT FOR VALIDATE COMMAND:

PRINT#15, "VALIDATE"

or abbreviated as

PRINT# 15, "V"

DUPLICATE

This command is a hangover from the operating systems that were contained on

the dual drives like the 4040. It was used to copy entire diskettes from one drive to

another, but has no function on a single disk drive.

READING THE ERROR CHANNEL

Without the DOS Support Program, there is no way to read the disk error channel

without a program, since you need to use the INPUT# command which won't work

outside a program. Here is a simple BASIC routine to read the error channel:

10 OPEN 15, 8, 15

20 INPUT# 15, AS, B$, C$, D$

30 PRINT A$, B$, C$, D$

Whenever you perform an INPUT# operation from the command channel, you

read up to 4 variables that describe the error condition. The first, third, and fourth

variables come in as numbers, and can be INPUT into numeric variables if you like.

The first variable describes the error#$, where 0 is no error. The second variable is the

error description. The third variable is the track number on which the error occurred,

and the fourth and final is the block number inside that track. (A block is also known

as a sector)

Errors on track 18 have to do with the BAM and directory. For example, a READ

ERROR on track 18 block 0 may indicate that the disk was never formatted.

18

CLOSE

It is extremely important that you properly CLOSE filesonce you are finished

using them. Closing the file causes the DOS to properly allocate blocks in the BAM

and to finish the entry in the directory. If you don't CLOSE the file, all your data will

be lost!

FORMAT FOR CLOSE STATEMENT:

CLOSE file#

You should also be careful not to CLOSE the error channel (channel# 15) before

CLOSEing your data channels. The error channel should be OPENed first and

CLOSEd last of all your files! That will keep your programs out of trouble.

If you close the error channel while other files are OPEN, the disk drive will

CLOSE them for you, but BASIC will still think they are open (unless you CLOSE

them properly), and let you to try to write to them.

NOTE: If your BASIC program leads you into an error condition, all files are

CLOSEd in BASIC, without CLOSEing them on your disk drive! This is a very

dangerous condition. You should immediately type the statement OPEN 15, 8, 15,

"I". This will re-initialize your drive and make all your files safe.

19

5. SEQUENTIAL FILES

OPEN

SEQuential files are limited by their sequential nature, which means they must be

read from beginning to end. Data is transferred byte by byte, through a buffer, onto

the magnetic media. To the disk drive all files are created equal. That is, SEQuential

files, program files, and user files all work the same on the disk. Only program files can

be LOADed, but that's really the only difference. Even the directory works like this,

except that it is read-only. The only difference is with relative files.

FORMAT FOR OPENING A SEQUENTIAL FILE:

OPEN file#, device#, channel#, "O:name,type,direction"

The file number is the same as in all your other applications of the OPEN state

ment, and it is used throughout the program to refer to this particular file. The device#

is usually 8. The channel# is a data channel, number 2 through 14. It is convenient to

use the same number for both the channel# and file#, to keep tlum straight. The name

is the file name (no wild cards or pattern matching if you're creating a write file). The

type can be any of the ones from the chart below, at least the first letter of each type.

The direction must be READ or WRITE, or at least the first letter of each.

FILE TYPE MEANING

PRG Program

SEQ Sequential

USR User

REL Relative

EXAMPLES OF OPENING SEQUENTIAL FILES:

OPEN 2, 8, 2, "0:DATA, S, W"

OPEN 8, 8, 8, "0:Program, P, R"

OPEN A, B, C, "0:" + A$ + "U, W"

If the file already exists, you can use the replace option in the OPEN statement,

similar to the SAVE-and-replace described in chapter 3. Simply add the @0: before the

file's name in the OPEN statement.

EXAMPLE OF SEQUENTIAL FILE WITH REPLACE OPTION:

OPEN 2, 8, 2, "@0:DATA,S,W"

The 0: should always precede the name of the file or the drive will only allow you

to use 2 of the available buffers.

20

PRINT# and INPUT#

The PRINT# command works exactly like the PRINT statement, except that out

put is re-directed to the disk drive. The reason for the special emphasis on the word ex

actly is that all the formatting capabilities of the PRINT statement, as applies to punc

tuation and data types, applies here too. It just means that you have to be careful when

putting data into your files.

FORMAT FOR WRITING TO FILE WITH PRINT#:

PRINT# file#, data list

The file# is the one from the OPEN statement when the file was created.

The data list is the same as the regular PRINT statement — a list of variables

and/or text inside quote marks. However, you must be especially careful when writing

data so that it is as easy as possible to read the data back again.

When using the PRINT# statement, if you use commas (,) to separate items on the

line, the items will be separated by some blank spaces, as if it were being formatted for

the screen. Semicolons (;) don't result in any extra spaces.

In order to more fully understand what's happening, here is a diagram of a se

quential file created by the statement OPEN 5, 8, 5, "O:TEST,S,W":

eof

char 1 10 11 12 13 14 15

The eof stands for the end-of-file marker. String data entering the file goes in byte

by byte, including spaces.

For instance, let's set up some variables with the statement A$= "HELLO";

B$ = "ALL": C$ = "BYE". Here is a picture of a file after the statement PRINT# 5,

&;B$

char

H

1

E

2

L

3

L

4

0

5

A

6

L

7

L

8

B

9

Y

10

E

11

CR

12

eof

13

CR stands for the CHR$ code of 13, the carriage return, which is PRINTed at the

end of every PRINT or PRINT# statement unless there is a comma or semicolon at the

end of the line.

NOTE: Do not leave a space between PRINT and #, and do not try to abbreviate the

command as ?#. See the appendixes in the user manual for the correct abbreviation.

FORMAT FOR INPUT# STATEMENT:

INPUT* file#, variable list

21

When using the INPUT# to read in data, the disk drive can't tell that it's not

supposed to be one long string. You need something in the file to act as a separator.

Characters to use as separators include the CR, a comma or a semicolon. The CR can

be added easily by just using one variable per line on the PRINT# statement, and the

system puts one there automatically. The statement PRINT# 5, A$: PRINT# 5, B$:

PRINT# 5, C$ puts a CR after every variable being written, providing the proper

separation for a statement like INPUT#5, A$, B$, C$. Or else a line like

Z$ = ",":PRINT# 5, A$ Z$ B$ Z$ C$ will do the job as well, and in less space. The file

after that line looks like this:

char

H

1

E

2

L

3

L

4

0

5 6

A

7

L

8

L

9 10

B

11

Y

12

E

13

CR

14

eof

15

used

char

Putting commas between variables results m lots of extra space on the disk bemg

. A statement like PRINT# 5, A$, B$ makes a file that looks like:

H

l

E

2

L

3

L

4

0

5 6 7 8 9 10 11

A

12

L

13

L

14

CR

23

eof

24

You can see that much of the space in the file is wasted.

The moral of all this is: take care when using PRINT# so your data will be in order

for reading back in.

Numeric data written in the file takes the form of a string, as if the STR$ function

had been performed on it before writing it out. The first character will be a blank space

if the number is positive, and a minus sign (-) if the number is negative. Then comes

the number, and the last character is the cursor right character. This format provides

enough information for the INPUT# statement to read them in as separate numbers if

several are written with no other special separators. It is somewhat wasteful of space,

since there can be two unused characters if the numbers are positive.

Here is a picture of the file after the statement PRINT# 5,1; 3; 5; 7 is performed:

1 —> 3 —> 5 —> 7 —4 CR eof

char 1 8 10 11 12 13 14 15

Appendix B contains a program demonstrating the use of a sequential disk file.

22

GET#

The GET# retrieves data from the disk, one character at a time.

FORMAT FOR THE GET# STATEMENT:

GET# file#, variable list

Data comes in byte by byte, including the CR, comma, and other separating

characters. It is much safer to use string variables when using the GET# statement. You

will get a BASIC error message if string data is received where a number was requested,

but not vice-versa.

EXAMPLES OF GET# STATEMENT:

GET# 5, A$

GET# A, B$, C$, D$

GET#5, A
You can get more than 1 character at a time^

The GET# statement is extremely useful when examining files with unknown con

tents, like a file that may have been damaged by an experimental program. It is safer

than INPUT# because there is a limit to the number of characters allowed between

separators of INPUT variables.* With GET#, you receive every character, and you can

examine separators as well as other data.

Here is a sample program that will allow you to examine any file on the disk:

10 INPUT "FILE NAME";F$

20 INPUT "FILE TYPE";T$

30 T$ = LEFTS (T$,l)

40 IF T$O"S" THEN IF T$O"P" THEN IF T$O"U" THEN20

45 OPEN15,8,15

50 OPEN5,8,5,"0:" + F$ + "," + T$ 4- ",R"

60 GOSUB200

70 GET#5,A$

80 IFST=0THEN90

85 IF ST=64 THEN CLOSE5,15:END ^ in CASE A

87 PRINT ST:STOP |^-~~ (NULL CHARACTER

90 PRINT ASC(A$ + CHR$(0)); t IS READ

100 GOTO70

200 INPUT#15,A$,B$,C$,D$

210 IF VAL(A$)>0 THEN PRINTA$,B$,C$,D$:STOP

220 RETURN

23

READING THE DIRECTORY

The directory of the diskette may be read just like a sequential file. Just use $ for

the file name, and OPEN 5, 8,5, "$". Now the GET# statement works to examine the

directory. The format here is identical to the format of a program file: the file sizes are

the line numbers, and names are stored as characters within quote marks.

Here's a program that lets you read the directory of the diskette:

SET LENGTH OF OPERATING SYSTEM STRING

10 OPEN1,8,2,"$"

20 FOR X= 1TO141:GET#1,A$:NEXT<

30 T$(0) = "DEL":T$(1) = "SEQ":T$(2) = "PRG":T$(3) = "USR":

T$(4) = "REL"

40 J=17:GOSUB500« (DISK NAME>

50 N$ = B$
£0 j _ 2 ^ / SET LENGTH OF ID STRING

70 GOSUB500

80 I$ = B$

85 GET#1,A$

90 J =

100 GOSUB500

110 O$ = B$

120 FORL=1TO88

130

140 NEXT

160 PRINT CHR$ (147) "DISK NAME:"N$,"ID:"I$,"OS:"O$

161 PRINT "LENGTH","TYPE","NAME"

165 FORP=1TO1.

170 GET#l,TtS]A$ ^ _
180 IF T$ = "" THEN T$ = CHR$(128)^^gT LENGTH OF FILE NAME STRING
190 J = 15<

200 GOSUB500

210 N$ = B$

220 GET#1,A$,A$,A$,A$,A$,A$,A$,A$,A$,C$,H$

225 L=ASC(L$ + CHR$(0)) + 256*ASC(H$+ CHR$(0)):IF L = 0 THEN 260

227 IF ST THEN CLOSE1:END

230 PRINT L,T$(ASC(T$)-128),N$

250 IF P< 8 THEN GET#1,A$,A$

260 NEXT P:GOTO165

500 B$ = ""

510 FORL=0TOJ

520 GET#1,A$ (STRING
530 IF A$ <>CHR$(96) THEN IF A$OCHR$(160) THEN B$ = B$ + A$ > BUILDING

540 NEXT I ROUTINE
550 RETURN

LOW & HIGH BYTES

, OF FILE LENGTH

24

Table 5.1: 1540/1541 BAM FORMAT

Track 18, Sector 0.

BYTE

0,1

2

3

4—143

CONTENTS

18,01

65

0

♦1 = available block

0 = block not available

(each bit represents

DEFINITION

Track and sector of first directory block.

ASCII character A indicating 4040 format.

Null flag for future DOS use.

Bit map of available blocks for tracks 1-35.

one block)

Table 5.2:1540/1541 DIRECTORY HEADER

Track 18, Sector 0.

BYTE

144—161

162—163

164

165,166

166—167

171—255

CONTENTS

160

50,65

160

0

DEFINITION

Disk name padded with shifted spaces.

Disk ID.

Shifted space.

ASCII representation for 2A which is DOS version

and format type.

Shifted spaces.

Nulls, not used.

Note: ASCII characters may appear in locations 180 thru 191 on some diskettes.

25

Table 5.3: DIRECTORY FORMAT

Track 18, Sector 1 for 1540/1541

BYTE

0,1

2—31

34—63

66—95

98—127

130—159

162—191

194—223

226—255

DEFINITION

Track and sector of next directory block.

♦File entry 1

♦File entry 2

♦File entry 3

♦File entry 4

♦File entry 5

♦File entry 6

♦File entry 7

♦File entry 8

♦STRUCTURE OF SINGLE DIRECTORY ENTRY

BYTE

0

1,2

3—18

19,20

21

22—25

26,27

28,29

CONTENTS

128 +type

DEFINITION

File type OR'ed with $80 (hexadecimal) to indicate

properly closed file.

TYPES: 0 = DELeted

1 = SEQential

2 = PROGram

3 = USER

4 = RELative

Track and sector of 1st data block.

File name padded with shifted spaces.

Relative file only: track and sector for first side sector

block.

Relative file only: Record size.

Unused.

Track and sector of replacement file when OPEN® is

in effect.

Number of blocks in file: low byte, high byte.

26

Table 5.4: SEQUENTIAL FORMAT

BYTE

0,1

2—256

DEFINITION

Track and sector of next sequential data block.

254 bytes of data with carriage returns as record terminators.

Table 5.5: PROGRAM FILE FORMAT

BYTE

0,1

2—256

DEFINITION

Track and sector of next block in program Hie.

254 bytes of program info stored in CBM memory format (with key

words tokenized). End of file is marked by three zero bytes.

27

6. RANDOM FILES

Sequential files are fine when you're just working with a continuous stream of

data, but some jobs require more than that. For example, with a large mailing list, you

would not want to have to scan through the entire list to find a person's record. For

this you need some kind of random access method, some way to get to any record in

side a file without having to read through the entire file first.

There are actually two different types of random access tiles on the Commodore

disk drive. The relative files discussed in the next chapter are more convenient for data

handling operations, although the random files in this chapter have uses of their own,

especially when working with machine language.

Random files on the Commodore disk drive reach the individual 256-byte blocks

of data stored on the disk. As was mentioned in the first chapter, there are a total of

683 blocks on the diskette, of which 664 are free on a blank diskette.

The diskette is divided into tracks, which are laid out as concentric circles on the

surface of the diskette. There are 35 different tracks, starting with track 1 at the outside

of the diskette to track 35 at the center. Track 18 is used for the directory, and the DOS

fills up the diskette from the center outward.

Each track is subdivided into blocks. Because there is more room on the outer

tracks, there are more blocks there. The outer tracks contain 21 blocks each, while the

inner ones only have 17 blocks each. The table below shows the number of blocks per

track.

Table 6.1: Track and Block Format

TRACK NUMBER

1 to 17

18 to 24

25 to 30

31 to 35

BLOCK RANGE

0to20

0tol8

0tol7

0 to 16

TOTAL BLOCK

21

19

18

17

The DOS contains commands for reading and writing directly to any track and

block on the diskette. There are also commands for checking to see which blocks are

available, and for marking off used blocks.

These commands are transmitted through the command channel (channel 15),

and tell the disk what to do with the data. The data must be read later through one of

the open data channels.

28

OPENING A DATA CHANNEL FOR RANDOM ACCESS

When working with random access files, you need to have 2 channels open to the

disk: one for the commands, and the other for the data. The command channel is

OPENed to channel 15, just like other disk commands you've encountered so far. The

data channel for random access files is OPENed by selecting the pound sign (#) as the

file name.

FORMAT FOR OPEN STATEMENT FOR RANDOM ACCESS DATA:

OPEN file#, device#, channel#, "#"

or optionally

OPEN file#, device#, channel#, "#buffer#"

EXAMPLES OF OPENING RANDOM ACCESS DATA CHANNEL:

if

OPEN 5, 8, 5, "#" ^DON'T CARE WHICH BUFFER

OPEN A, B, C, "#2^ _^(PICK BUFFER |

BLOCK-READ

FORMAT FOR BLOCK-READ COMMAND:

PRINT#file#, "BLOCK-READ:" channel; drive; track; block

or abbreviated as

PRINT#file#, "B-R:" channel; drive; track; block

This command will move one block of data from the diskette into the selected

channel. Once this operation has been performed, the INPUT# and GET# statements

can read the information.

SAMPLE PROGRAM TO READ BLOCK 2 FROM TRACK 18: (stores contents in

B$)

^ DRIVE
CHANNEL A

10 OPEN15,8,15

20 OPEN5,8,5,"#"

30 PRINT#15,"B-R:"5;O;1~8;2

40 B$=""

50 FORL= 0TO255

60 GET#5,A$

70 IF ST = 0 THENBS = B$ + A$:NEXTL

80 PRINT "FINISHED"

90 CLOSE5:CLOSE15 \COLLECT ENTIRE
BLOCK: BYTE

BY BYTE

BLOCK-WRITE

The BLOCK-WRITE command is the exact opposite of the BLOCK-READ com

mand. First you must fill up a data buffer with your information, then you write that

buffer to the correct location on the disk.

FORMAT FOR BLOCK-WRITE COMMAND:

PRINT#file#, "BLOCK-WRITE:" channel; drive; track; block

or abbreviated as

PRINT#file, "B-W:" channel; drive; track; block

When the data is being put into the buffer, a pointer in the DOS keeps track of

how many characters there are. When you perform the BLOCK-WRITE operation,

that pointer is recorded on the disk. That is the reason for the ST check in line 70 of the

program above: the ST will become non-zero when you try to read past the end-of-file

marker within the record.

SAMPLE PROGRAM TO WRITE DATA ON TRACK 1, SECTOR 1:

OPEN A RANDOM

ACCESS CHANNEL10 OPEN15,8,15

20 OPEN5,8,5,"#"<

30 FORL=lTO50

40 PRINT#5,"TEST"

50 NEXT

60 PRINT#15,"B-W:"5;O;1;1

70 CLOSE5.CLOSE15

BLOCK-ALLOCATE

In order to safely use random files along with regular files, your programs must

check the BAM to find available blocks, and change the BAM to reflect that you've

used them. Once you update the BAM, your random files will be safe — at least unless

you perform the VALIDATE command (see chapter 3).

FORMAT FOR THE BLOCK-ALLOCATE COMMAND:

PRINT#file#, "BLOCK-ALLOCATE:" drive; track; block

30

How do you know which blocks are available to use? If you try a block that isn't

available, the DOS will set the error message to number 65, NO BLOCK, and set the

track and block numbers to the next available track and block number. Therefore, any

time you attempt to write a block to the disk, you must first try to allocate that block.

If that block isn't available, read the next block available from the error channel and

then allocate that block.

EXAMPLE OF PROCEDURE TO ALLOCATE BLOCK:

DRIVE

10 OPEN15,8,15

20 OPEN5,8,5,"#"

30 PRINT#5,"DATA"

40 T=1:B=1

50 PRINT#15,"B-A:"0;T;B

60 INPUT#15,A,B$,C,D

70 IF A=65 THEN T=C:B = D:GOTO50

80 PRINT #15,"B-W:"5;0;l;l

90 CLOSE5:CLOSE15

BLOCK-FREE

The BLOCK-FREE command is the opposite of BLOCK-ALLOCATE, in that it

frees a block that you don't want to use anymore for use by the system. It is vaguely

similar to the SCRATCH command for files, since it doesn't really erase any data from

the disk — just frees the entry, in this case just in the BAM.

FORMAT FOR BLOCK-FREE COMMAND:

PRINT#file#, "BLOCK-FREE:" drive; track; block

or abbreviated as

PRINT#file#, "B-F:" drive; track; block

USING RANDOM FILES

The only problem with what you've learned about random files so far is that you

have no way of keeping track of which blocks on the disk you used. After all, you can't

tell one used block on the BAM from another. You can't tell whether it contains your

random file, just part of a program, or even sequential or relative files.

To keep track, the most common method is to build up a sequential file to go with

each random file. Use this file to keep just a list of record, track, and block locations.

This means that there are 3 channels open to the disk for each random file: one for the

command channel, one for the random data, and the other for the sequential data.

This also means that there are 2 buffers that you're filling up at the same time!

31

SAMPLE PROGRAM WRITING 10 RANDOM-ACCESS BLOCKS WITH SE

QUENTIAL FILE:

10 OPEN15,8,15

20 OPEN5,8,5,"#"

30 OPEN4,8,4,"@0:KEYS,S,W"

40 A$ = "RECORD CONTENTS #"

50 FORR=lTO10

70 PRINT#5,A$","R
90 T=1:B=1*

100 PRINT#15,"B-A:"0;T;B

110 INPUT#15,A,B$,C,D<

120 IF A=65 THEN T=C:B= D:GOTO100

130 PRINT#15,"B-W:"5;O;T;B

140 PRINT#4,T","B

150 NEXT R

160 CLOSE4:CLOSE5:CLOSE15

FIND NEXT

AVAILABLE

TRACK &

BLOCK

SAMPLE PROGRAM READING BACK 10 RANDOM-ACCESS BLOCKS WITH

SEQUENTIAL FILE:

/ CHECKS TON
(MAKE SURE)
X-DATA IS OK /

10 OPEN15,8,15

20 OPEN5,8,5,"#"

30 OPEN4,8,4,"KEYS,S,R"

40 FORR=lTO10

50 INPUT#4,T,B

60 PRINT#15,"B-R:"5;0;T;B

80 INPUT#5,A$,X

90 IF A$<>"RECORD CONTENTS #"OR X<>R THEN STOP

100 PRINTA$;R

110 PRINT#15,"B-F:"0;T;

120 NEXT R

130 CLOSE4:CLOSE5

140 PRINT#15,"S0:KEYS"

150 CLOSE15

4

FREES THIS

TRACK & BLOCK

FOR LATER USE

32

BUFFER-POINTER

The buffer pointer keeps track of where the last piece of data was written. It also

is the pointer for where the next piece of data is to be read. By changing the buffer,1

pointer's location within the buffer, you can get random access to the individual bytes

within a block. This way, you can subdivide each block into records.

For example, let's take a hypothetical mailing list. The information such as name,

address, etc., will take up a total of 64 characters maximum. We could divide each

block of the random access file into 4 separate records, and by knowing the track, sec

tor, and record numbers, we can access that individual record.

FORMAT FOR BUFFER-POINTER COMMAND:

PRINT#file#, "BUFFER-POINTER:" channel; location

or abbreviated as

PRINT#file#, "B-P:" channel; location

EXAMPLE OF SETTING POINTER TO 64TH CHARACTER OF BUFFER:

PRINT# 15, "B-P:" 5; 64

Here are versions of the random access writing and reading programs shown

above, modified to work with records within blocks:

SAMPLE PROGRAM WRITING 10 RANDOM-ACCESS BLOCKS WITH 4

RECORDS EACH:

10 OPEN15,8,15

20 OPEN5,8,5,"#"

30 OPEN4,8,4,"@0:KEYS,S,W"

40 A$ = "RECORD CONTENTS #"

50 FORR=lTO10

60 FORL=1TO4

70 PRINT#15,"B-P:"5;(L-1)*64+1

80 PRINT#5,A$ ","L

90 NEXT L

100T=l:B=l

110 PRINT#15,"B-A:"0;T;B

120 INPUT#15,A,B$,C,D

130 IF A = 65 THEN T=C:B = D:GOTO110

140 PRINT#15/'B-W:"5;O;T;B

150 PRINT#4,T","B

160 NEXT R

170 CLOSE4:CLOSE5:CLOSE15

FIND

AVAILABLE

TRACK &

BLOCK

33

SAMPLE PROGRAM READING BACK 10 RANDOM-ACCESS BLOCKS WITH

4 RECORDS EACH:

10 OPEN15,8,15

20 OPEN5,8,5,"#"

30 OPEN4,8,4,"KEYS,S,R"

40 FORR=lTO10

50 INPUT#4,T,B

60 PRINT#15,"B-R:"5;0;T;B

70 FORL=1TO4

80 PRINT#15,"B-P:"5;(L-1)*64+1

85 INPUT#5,A$,X

90 IF A$< >"RECORD CONTENTS #" OR X< >L THEN STOP

95 PRINT R;A$;L

100 NEXT L

110 PRINT#15,"B-F:"0;T;B

120 NEXT R

130 CLOSE4:CLOSE5

140 PRINT#15,"S0:KEYS"

150 CLOSE15

USER1 and USER2

The USER commands are generally designed to work with machine language (see

chapter 8 for more on this). The USER1 and USER2 commands are special versions of

the BLOCK-READ and BLOCK-WRITE commands, but... with an important dif

ference: the way USER1 and USER2 work with the buffer-pointer.

The BLOCK-READ command reads up to 256 characters, but stops reading when

the buffer-pointer stored with the block says that block is finished. The USER1 com

mand performs the BLOCK-READ operation, but first forces the pointer to 255 in

order to read the entire block of data from the disk.

FORMAT FOR USER1 COMMAND

PRINT#file#, "Ul:" channel; drive; track; block

or

PRINT#file#, "UA:" channel; drive; track; block

There is no difference between the Ul and UA designations for this command.

34

The BLOCK-WRITE command writes the contents of the buffer to the block on

the disk along with the value of the buffer-pointer. The USER2 command writes the

buffer without disturbing the buffer-pointer value already stored on that block of the

diskette. This is useful when a block is to be read in with BLOCK-READ, updated

through the BUFFER-POINTER and PRINT# statements, and then written back to

the diskette with USER2.

FORMAT FOR USER2 COMMAND:

PRINT#file#, "U2:" channel; drive; track; block

or

PRINT#file#, "UB:" channel; drive; track; block

For a more complex sample program, see Appendix C.

35

7. RELATIVE FILES

RELative files allow you to easily zero in on exactly the piece of data that you

want from the Hie. It is more convenient for data handling because it allows you to

structure your files into records, and into fields within those records.

The DOS keeps track of the tracks and blocks used, and even allows records to

overlap from one block to the next. It is able to do this because it establishes side sec

tors, a series of pointers for the beginning of each record. Each side sector can point to

up to 120 records, and there may be 6 side sectors in a file. There can be up to 720

records in a file, and each record can be up to 254 characters, so the file could be as

large as the entire diskette.

CREATING A RELATIVE FILE

When a RELative file is first to be used, the OPEN statement will create that file;

after that, that same file will be used. The replace option (with the @ sign) does not

erase and re-create the file. The file can be expanded, read, and written into.

FORMAT FOR THE OPEN STATEMENT TO CREATE RELATIVE FILE:

OPEN fileff, device*, channel, "name,L," + CHR$(record length)

EXAMPLES OF OPEN STATEMENT CREATING RELATIVE FILES:

OPEN 2, 8, 2, "FILE,L,"+ CHR$(100)

OPEN F, 8, F, A$+",L," + CHR$(Q)

OPEN A, B, C, "TEST,L," + CHR$(33)

36

Table 7.1: RELATIVE FILE FORMAT

DATA BLOCK

BYTE

0,1

2—256

DEFINITION

Track and block of next data block.

254 bytes of data. Empty records contain FF (all binary ones) in the

first byte followed by 00 (binary all zeros) to the end of the record.

Partially filled records are padded with nulls (00).

SIDE SECTOR BLOCK

BYTE

0,1

2

3

4,5

6,7

8,9

10,11

12,13

14,15

16—256

DEFINITION

Track and block of next side sector block.

Side sector number. (0-5)

Record length.

Track and block of first side sector (number 0)

Track and block of second side sector (number 1)

Track and block of third side sector (number 2)

Track and block of fourth side sector (number 3)

Track and block of fifth side sector (number 4)

Track and block of sixth side sector (number 5)

Track and block pointers to 120 data blocks.

Upon execution, the DOS first checks to see if the file exists. If it does, then

nothing happens. The only way to erase an old relative file is by using the SCRATCH

command (see chapter 4), but not by using the replace option.

37

USING RELATIVE FILES

In order to OPEN a relative file once it exists, the format is simpler.

FORMAT FOR OPENING AN EXISTING RELATIVE FILE:

OPEN file#, device#, channel, "name"

In this case, the DOS automatically knows that it is a relative file. This syntax, and

the one shown in the above section, both allow either reading or writing to the file.

In order to read or write, you must, before any operation, position the file pointer

to the correct record position.

FORMAT FOR POSITION COMMAND:

PRINT#file#, "P" CHR$(channel#+96) CHR$(rec#lo) CHR$(rec#hi)

CHR$(position)

EXAMPLES OF POSITION COMMAND

PRINT#15, "P" CHR$(2+96VCHR$(1) CHR$(0)

PRINT#15, "P" CHR$(CH + 96^CHR$(R1) CHR$(R2)

PRINT#15, "P" CHR$(4+96) CHR$(R1) CHR$(R2) CHR$(P) (within Record

The 2-byte format for the record number is needed because one byte can only hold

256 different numbers, and we can have over 700 records in the file. The rec# lo con

tains the least significant part of the address, and the rec# hi is the most significant

part. This could be translated to the actual record number by the formula

REC#=REC HI ♦ 256 + REC LO.

If the record number is known, the high and low bytes can be determined as

follows:

REC# HI = INT(REC#/256)

REC# LO= REC#- REC# HI*256

EXAMPLE:

PRINT#15, "P" CHR$(4+96) CHR$(R1) CHR$(R2) CHR$(0)

If REC#=54O: R2=INT(540/256) . . . so R2=2

Rl = 540-R2*256 . . '. so Rl=28

38

Let's assume we have a mailing list. The list consists of 8 pieces of data, according

to this chart:

Field Name

first name

last name

address line 1

address line 2

city

state

zip code

phone number

Le

12

15

20

20

12

2

9

10

TOTAL 100

This is how the record length is determined. We would probably want to allow an

extra character in length for each field, to allow for separations; otherwise the INPUT#

command would pick up a much longer piece of the file than needed, just like in se

quential files. Therefore, we'll set up a file with a length of 108 characters per record.

In the first record, we'll put the number 1, representing the largest record# used so far.

Here is the program as described so far:

5 X = 0

10 OPEN1,8,15

20 OPEN2,8,3,"0:MAILINGLIST,L," + CHR$(108)

30 GOSUB900

40 PRINT#l,<<P"CHR$(3 + 96)CHR$(l)CHR$(0)CHR$(l)

50 GOSUB900

60 IFE = 50THENPRINT#2,l:GOTO40

70 INPUT#2,X

75 PRINT X ^/ERROR SUBROUTINE^
300 STOP:CLOSE1;CLOSE2;END^

900 INPUT#1,E,B$,C,D4

910 IF (E = 50) OR (E<20) THEN RETURN

920 PRINT E;B$;C;D:STOP:RETURN

Error #50 which is checked in line 60 of the program is the RECORD NOT PRE

SENT error, which means that the record hadn't been created yet. Writing into the

record will solve the problem. This error condition must be watched carefully within

your programs.

39

So far, all it does is create the file and the first record, but doesn't actually put any

data in it. Below is a greatly expanded version of the program, to actually allow you to

work with a mailing list where the records are coded by numbers.

/OPEN
RELATIVE

FILE CALLED

V'MAILING LIST"

5 A(l) = 12:A(2) = 15:A(3) = 20:A(4) = 20:A(5) = 12:A(6) = 2:A(7) = 9:A(8) = 10

10 OPEN1,8,15:OPEN2,8,3,"0:MAILING LIST,L," + CHR$(108):GOSUB900*

20 PRINT#1,"P"CHR$(3 + 96)CHR$(l)CHR$(0)CHR$(l):INPUT#2,X$:

X= VAL(X$): X = 0 THEN X= 2

30 INPUT "READ,WRITE,OR END";J$:IF J$ = "E"THEN CLOSE2:

CLOSE1:END ^^"^^^

40 IF J$ = "W" THEN 200 fREAD ROUTINE J
50 PRINT:INPUT "RECORD #";R:IF R<0 OR R>X THEN ^^
60 IFR<2THEN30

70 Rl = R:R2=0:IF Rl>256 THEN R2=INT (R1/256):R1 = R1-256*R2

80 RESTORE:DATA1,FIRST NAME,14,LAST NAME,30,ADDRESSl,51,

ADDRESS2

90 DATA72,CITY,85,STATE,88,ZIP,98,PHONE#

100 FOR L= 1TO8:READ A,A$:PRINT#l,"P"CHR$(3 + 96) (R1)CHR$(R2)

HR$(A):GOSUB900 ^^"
110 ON A/50 GOTO50 (WRITE ROUTINE
115 INPUT#2,Z$:PRINT A$,Z$:NEXT:GOTO50 S^
200 PRINT:INPUT "RECORD #";R:IF R<0 OR R>500 THEN 200

210 IF R< 2 THEN 30

215 IF R>K THEN R=X+ 1:PRINT:PRINT "RECORD#";R

220 Rl = R:R2=0:IF R>255 THEN R2=INT (R1/256):R1 = R1-256*R2

230 RESTORE:FOR L= 1TO8:READ A,A$:PRINT#l,"P"CHR$(3 + 96)

CHR$(R1)CHR$(R2)CHR$(A)

232 GOSUB900

235 PRINT A$;:INPUT Z$:IF LEN(Z$)>A(L) THEN Z$ = LEFT$(Z$,A(L))

240 PRINT#2,Z$:GOSUB900:NEXT:IFR>XTHENX=R

245 PRINT#l,"P>)CHR$(3 + 96)CHR$(l)CHR$(0)CHR$(l)

250 PRINT#2,X:GOSUB900:GOTO200

900 INPUT#1,A,B$,C,D:IF A< 20 THEN RETURN'

910 IF A<>50 THEN PRINT A;B$,C;D:STOP:RETURN

920 IF J$ = "R" THEN PRINT B$

930 RETURN

This program asks for record numbers when retrieving records. It won't let you

retrieve from beyond the end of the file, and if you try to write beyond the end it forces

you to write on the next higher record.

A more advanced version than this would keep track of the items by "keys", to

index the records. For example, you would probably want to search for a record by

name, or print out labels by zip code. For this you would need a separate list of keys

and record numbers, probably stored in sequential files.

40

ERROR CHECKING

SUBROUTINE

When working with a new relative file that will soon be very large, it will save

much time to create a record at the projected end of the file. In other words, if you ex

pect the file to be 1000 records long, create a record# 1000 as soon as the file is created.

This will force the DOS to create all intermediate records, making later use of those

records much faster.

EXAMPLE OF CREATING LARGE FILE:

OPEN 1, 8, 15: OPEN 2, 8, 2, "0:REL,L," + CHR$(60)

PRINT#1, "P" CHR$(2+96) CHR$(0) CHR$(4) CHR$(l)

PRINT#2, "END"

CLOSE 2: CLOSE 1

PROGRAM AND EXPLANATION

1 REM RELATIVE FILE PROGRAM

2 DIM A$ (5):DIM C$(5) :PRINT" S3 "

3 PRINT "HIT Fl TO CONSTRUCT A RELATIVE FILE"

4 PRINT "HIT F3 TO READ A RELATIVE FILE"

5 PRINT "HIT F5 TO READ THE ERROR CHANNEL":GOSUB 5000

6 INPUT"ENTER RELATIVE FILE NAME";Z$

8 OPEN2,8,2,Z$ + ",L," + CHR$(50) :REM CREATE THE RELATIVE FILE

9 OPEN1,8,15

11 GOSUB 1000

20 FOR 1=1 TO 5

30 PRINT#1 ,"P"CHR$(2+96)CHR$(I)CHR$(0)CHR$(l):REM POSITION THE

RECORD POINTER

40 PRINT "ENTER A NAME"

50 INPUT A$(I)

60 PRINT#2,A$,(I)

63 INPUT "ENTER ADDITIONAL INFO";C$(I)

65 PRINT#l/T"CHR$(2+96)CHR$(I)CHR$(0)CHR$(25) :REM POSITION
POINTER TO 25TH CHARACTER

67 PRINT #2,C$(I)

70 NEXT I

75 PRINT"DO YOU WISH TO REPLACE A RECORD":INPUT D$

76 IFD$ = "N"THEN80

77 GOSUB 8000

78 GO TO 75

80 PRINT"THE RELATIVE FILE IS CONSTRUCTED"

82 FOR DE= 1 TO 2500:NEXT DE:GOSUB 6000

85 CLOSE 2

90 END:STOP

100 INPUT "ENTER DESIRED FILE TO READ";Z$

105 OPEN 2,8,2,Z$:OPEN 1,8,15

106 PRINT "READING "Z$

110 FOR 1=1 TO 5

115 REM FOR I = 5TO1 STEP -1

130 PRINT#1 ,"P"CHR$(2 + 96)CHR$(I)CHR$(0)CHR$(l)

160 INPUT#2,A$(I)

41

170 PRINT "RECORD#("I") = ",A$(I)

175 K= 6-I

177 PRINT#1,"P"CHR$(2+ 96)CHR$(I)CHR$(0)CHR$(25)

179 INPUT#2,a(I):PRINT"ADDITIONAL INFO:";C$(I)

180 NEXT I

181 PRINT "DO YOU WISH TO REPLACE A RECORD":INPUT D$

182 IF D$ = "N" THEN 185

183 GOSUB 8000

184 GO TO 181

185 GOSUB 1000

186 J = I+1

190 PRINT "END OF READ":FOR DE= 1 TO 1500:NEXT DE:GOSUB

6000:CLOSE2:CLOSE1:END

1000 INPUT#1,A,B$,C,D,:IF A < 20 THEN RETURN

1001 IF A< >50 THEN PRINT A,B$,C,D :STOP:RETURN

1999 END

2000 OPEN 15,8,15

2001 INPUT#15,A,B$,C,D

2002 PRINT A,B$,C,D

2003 CLOSE 15:END

5000 GET S$:IF S$ = "'THEN 5000 :REM SCAN KEYBOARD FOR

FUNCTION KEY CHR$ CODES

5001 IF S$ = CHR$(133) THEN 6:REM ASSIGN Fl FUNCTION KEY

5002 IF S$ = CHR$(134) THEN 100:REM ASSIGN F3 FUNCTION KEY

5003 IF S$ = CHR$(135) THEN 2000:REM ASSIGN F5 FUNCTION KEY

5004 RETURN

6000 PRINT "DHIT F7: FOR HARD COPY OR C TO CONTINUE"

6001 GET P$:IF P$ < > CHR$(136) AND P$ = "C" THEN RETURN

6002 FOR DE= 1 TO 500:NEXT DE:IF P$ = ""OR P$< >CHR$(136) THEN

6000

6003 OPEN 4,4 :CMD4

6004 PRINT#4,"THE "Z$" FILE CONSISTS OF:"

6005 FOR 1=1 TO 5

6010 PRINT#4,"RECORD # ";I;" = ";

6012 PRINT#4,"ADDITIONAL IN

6015 NEXT I

6020 CLOSE4:RETURN

7000 REM TO READ IN RECORDS IN REVERSE ORDER REMOVE THE

REM IN LINE #115 AND

7002 REM PUT A REM BEFORE LINE#110

7005 REM TO READ THE 1ST FIELD OF THE 1ST RECORD AND THE 2ND

FIELD OF THE LAST

7007 REM REPLACE THE CHR$(I) IN LINE 177 WITH CHR$(K)

8000 PRINT"WHICH RECORD # DO YOU WANT REPLACED":INPUT I

8001 INPUT"ENTER NEW RECORD";A$(I)

8002 PRINT#l,"P"CHR$(2 + 96)CHR$(I)CHR$(0)CHR$(l):REM POSITION FILE

POINTER

8003 PRINT#2,A$(I)

8004 INPUT"ENTER NEW RECORD (FIELD 2)";C$(I)

42

8005 PRINT#1 ,"P"CHR$(2+ 96)CHR$(I)CHR$(0)CHR$(25) :REM POSITION FILE
POINTER

8007 PRINT#2,C$(I)

8009 PRINT"RECORD#";I;"HAS BEEN REPLACED"

8010 RETURN

CREATE A RELATIVE FILE

The program below, creates a relative file with 2 fields. The first field starts in

position 1 of the record and the second field starts in position 25.

LINE 8: Create the file. Make room for records of 50 characters with the CHR$(50).

Use the Z$ as a file, input variable in LINE 6, you can then press the f1 function key to

create a file.

LINE 30: Point to the first character position of a file. P tells the disk drive to point to

the position in the record that corresponds to the optional, CHR$(1).

NOTE: If the CHR$ is not specified, character position defaults to 1.

LINE 65: Point to the twenty-fifth character position of a file. P tells the disk drive to

point to the position in the record that corresponds to the CHR$(25).

NOTE: The POSITION command does NOT write anything to, or read anything

from the file. It just points to the position specified in the record.

WRITE TO A RELATIVE FILE

LINE 60: Use the PRINT# statement after the POSITION command to move to

character position 1, as specified in LINE 30 — CHR$(1).

READ FROM A RELATIVE FILE

LINE 130: Specify the character position using the POSITION command. Then follow

it with LINE 160, the INPUT# statement.

SUMMARY

In this program, you press the fl key and a RELative file is created on disk. You

can type RUN and press the f3 key to READ the previous RELative file. If an error

condition exists (flashing red light on the disk drive) you can hit the RUN/STOP key,

type RUN and press the f5 key. This reads the ERROR CHANNEL from the drive,

shows the error number and message, as well as the track and sector of the error. It

then resets the drive for use. Later on the program asks if the file should be printed. To

print the file, press the f7 key when prompted, or press C to continue.

43

REMEMBER:

1) Before a file can be written to, or read from, a POSITION command must be ex

ecuted.

2) You must always use PRINT #1 with the POSITION command. This puts your

data under command channel control.

3) The FIRST character string code in the POSITION command must correspond to

the THIRD number (channel #) in the OPEN statement. Except OPEN 1, 8, 15

(see lines 8 and 30 of above program).

4) For convenience, use the FOR ... NEXT loop variable in the SECOND character

string, CHR$(I), of the POSITION command where I equals the record number

(see lines 20 and 30 of above program).

MODIFYING THE PROGRAM

1) You can add more POSITION commands to make more fields within each record.

Remember to include the character position number as the last CHR$, when ad

ding fields.

2) To change the length of each record, change the value of CHR$(50) in LINE 8.

3) The number of records in the file is determined by the POSITION command. The

current example can process 5 records; the FOR ... NEXT loop variable is 1 to 5.

The program can process 720 records, but in order to use more than 512 records,

the number 2 must be in the THIRD CHR$() of the POSITION command. For

more than 256, use the number 1. For up to 256 records, simply use the FOR . . .

NEXT loop variable. EXAMPLE: FOR 1= 1 TO 256 may access 256 records.

44

8, PROGRAMMING THE DISK CONTROLLER

The expert programmer can actually design routines that reside and operate on the

disk controller. DOS routines can be added that come from the diskette. Routines can

be added much the same way as the DOS Support Program is "wedged" into your

memory.

BLOCK-EXECUTE

This command will load a block from the diskette containing a machine language

routine, and begin executing it at location 0 in the buffer until a RTS (ReTurn from

Subroutine) command is encountered.

FORMAT FOR BLOCK-EXECUTE:

PRINT#file#, "B-E:" channel; drive; track; block

MEMORY-READ

There is 16K of ROM in the disk drive as well as 2K of RAM. You can get direct

access to these, or to the buffers that the DOS has set up in the RAM, by using the

MEMORY commands. MEMORY-READ allows you to select which byte to read,

through the error channel.

FORMAT FOR MEMORY-READ:

PRINT#file#, "M-R" CHR$(low byte of address) CHR$(high byte)

(no abbreviation!)

The next byte read using the GET# statement through channel# 15, the error

channel, will be from that address in the disk controller's memory, and successive bytes

will be from successive memory locations.

Any INPUT# to the error channel will give peculiar results when you're using this

command. This can be cleared up by any other command to the disk (aside from a

memory command).

PROGRAM TO READ THE DISK CONTROLLER'S MEMORY:

10 OPEN15,8,15

20 INPUT"LOCATION PLEASE";A

25 FORL=lTO50

30 A1 = INT(A/256):A2 = A-A1*256

40 PRINT#15,"M- R"CHR$(A2)CHR$(A1)

50 GET#1

60 PRINT ASC(A$ + CHR$(0));

70 A=A+1

80 NEXT

90 INPUT "CONTINUE";A$

100 IF LEFT$(A$,1)= "Y" THEN 25

110 GOTO20

45

GET CHARACTERS

FROM ERROR

CHANNEL

MEMORY-WRITE

The MEMORY-WRITE command allows you to write up to 34 bytes at a time in

to the disk controller's memory. The MEMORY-EXECUTE and USER commands

can be used to run this code.

FORMAT FOR MEMORY-WRITE:

PRINT#file#, "M-W" CHR$(low address byte) CHR$(high address byte)

CHR$(#-of-characters) byte data

PROGRAM TO WRITE AN "RTS" TO DISK:

^^/initialize disk first

10 OPEN8,8,15,'T'<

20 PRINT#8,"M- W"CHR$(0)CHR$(3)CHR$(l)CHR$(96)

30 PRINT#8,"M-E"CHR$(O)CHR$(3)

40 CLOSE8

MEMORY-EXECUTE

Any routine in the DOS memory, RAM or ROM, can be executed with the

MEMORY-EXECUTE command.

FORMAT FOR MEMORY-EXECUTE:

PRINT#file#, "M-E" CHR$(low address byte) CHR$(high byte)

See line 30 above for an example.

46

> (HEXADECIMAL LOCATIONS)

USER COMMANDS

Aside from the USERl and USER2 commands discussed in chapter 6, and the

UI + and UI - commands in chapter 2, the USER commands are jumps to a table of

locations in the disk drive's RAM memory.

USER COMMAND FUNCTION

UI or UA BLOCK-READ without changing buffer-pointer

U2 or UB BLOCK-WRITE without changing buffer-pointer

U3 or UC jump to $0500

U4 or UD jump to $0503

U5 or UE jump to $0506

U6 or UF jump to $0509

U7 or UG jump to $050C

U8 or UH jump to $050F

U9 or UI jump to $FFFA

U; or UJ power-up vector

UI + set Commodore 64 speed

UI- set VIC 20 speed

By loading these locations with another jump command, like JMP $0520, you can

create longer routines that operate in the disk's memory along with an easy-to-use

jump table — even from BASIC!

EXAMPLES OF USER COMMANDS:

PRINT# 15, "U3"

PRINT# 15, "U" + CHR$(50+Q)

PRINT# 15, "UI"

47

9. CHANGING THE DISK DRIVE DEVICE NUMBER

SOFTWARE METHOD

The device number is selected by the drive by looking at a hardware jumper on the

board and writing the number based on that jumper in a section of its RAM. Once

operation is underway, it is easy to write over the previous device number with a new

one.

FORMAT FOR CHANGING DEVICE NUMBER:

PRINT#file#, "M-W:" CHR$(119) CHR$(0) CHR$(2) CHR$(address + 32)

CHR$(address+64)

EXAMPLE OF CHANGING DEVICE NUMBER (FROM 8 TO 9):

10 OPEN 15, 8, 15

20 PRINT# 15, "M-W" CHR$(119) CHR$(0) CHR$(2) CHR$(9+ 32)

CHR$(9 + 64)

. If you have more than one drive, it's sensible to change the address through hard

ware (see below). If you must, the procedure is easy. Just plug in the drives one at a

time, and change their number to the desired new values. That way you won't have any

conflicts.

48

HARDWARE METHOD

It's an easy job to permanently change the device number of your drive for use in

multiple drive systems. The tools needed are a phillips-head screwdriver and a knife.

STEPS TO CHANGING DEVICE NUMBER ON HARDWARE:

1. Disconnect all cables from drive, including power.

2. Turn drive upside down on a flat, steady surface.

3. Remove 4 screws holding drive box together.

4. Carefully turn drive right side up, and remove case top.

5. Remove 2 screws on side of metal housing.

6. Remove housing.

7. Locate device number jumpers. If facing the front of the drive, it's on the

left edge in the middle of the board.

8. Cut either or both of jumpers 1 and 2 for Model 1541.

Cut either or both of jumpers A and B for Model 1541CR.

(see chart below)

9. Replace housing and 2 screws, and case top and 4 screws.

10. Re-connect cables and power up.

DEVICE#

8

9

10

11

JUMPER A/1

DON'T CUT

CUT

DON'T CUT

CUT

JUMPER B/2

DON'T CUT

DON'T CUT

CUT

CUT

49

10. ASSEMBLY LANGUAGE AND THE 1541

If you want to use your 1541 disk drive to manipulate data directly from assembly

language you can use the information presented below.

Here is a list of subroutines that provide the start of memory locations in each of

the Kernal routines. These routines are used in conjunction with the assembly language

command JSR to jump to that subroutine location in memory:

SUBROUTINE

SETLFS = $FFBA

SETNAM = $FFBD

OPEN = $FFC0

CLOSE = $FFC3

CHKIN = $FFC6

CLRCH = $FFCC

BASIN = SFFCF

BSOUT = $FFD2

set logical, physical & secondary addresses

save length & address of filename

open a logical file

close a logical file

open a channel for input

clear all channels

get a byte from a file

output a character to the screen

For a more complete description as to what each routine does and what

parameters are passed to and from each routine, see your Commodore 64 or VIC-20

Programmer's Reference Guide.

Now, for a practical application of the subroutines listed above, here is a sample

program using those routines to read a sequential file on a disk. Assume that you have

stored the filename "TEST" at $C000.

INIT

LDA#$04

LDX#$00

LDY#$C0

JSR SETNAM

LDA#$03

LDX#$08

LDY#$00

JSR SETLFS

JSR OPEN

LDX #$03

JSR CHKIN

your program info

JSR BASIN

BEQ END

JSR BSOUT

JMP your prog, info

END

LDA#$03

JSR CLOSE

JSR CLRCH

RTS

initialize:

filename length

low byte of filename address

high byte of filename address

save length & address of filename

logical address

device number

secondary address (0 = read seq. file)

set logical, physical & secondary addresses

open logical file

set x-register to logical address

open input channel

get data and print it one byte at a time

get one byte

if 0 then end of file or error

output character to the screen

loop

set accumulator to logical address

close file

clear channels and reset defaults

end of assembly language program

50

APPENDIX A: DISK COMMAND SUMMARY

General Format: PRINT#file#, command

COMMAND

NEW

COPY

RENAME

SCRATCH

INITIALIZE

VALIDATE

DUPLICATE

BLOCK-READ

BLOCK-WRITE

BLOCK-ALLOCATE

BLOCK-FREE

BUFFER-POINTER

USER1 and USER2

POSITION

BLOCK-EXECUTE

MEMORY-READ

MEMORY-WRITE

MEMORY-EXECUTE

USER Commands

"N

"C:new file= :orginal file

"R:new name=old name

"Srfile name

"I

"V

not for single drives

"B-R:" channel; drive; track; block

"B-W:" channel; drive; track; block

"B-A:" drive; track; block

"B-F:" drive; track; block

"B-P:" channel; position

"Un:" channel; drive; track; block

"P" CHR$(channel#) CHR$(rec#lo) CHR$(rec#hi)

CHRS(position)

"B-E:" channel; drive; track; block

"M-R" CHR$(address lo) CHR$(address hi)

"M-W" CHR$(address lo) CHR$(address hi)

CHR$(#chars) "data"

"M-E" CHR$(address lo) CHR$(address hi)

"Un"

51

APPENDIX B: SUMMARY OF CBM FLOPPY ERROR MESSAGES

0 OK, no error exists.

1 Files scratched response. Not an error condition.

2-19 Unused error messages: should be ignored.

20 Block header not found on disk.

21 Sync character not found.

22 Data block not present.

23 Checksum error in data.

24 Byte decoding error.

25 Write-verify error.

26 Attempt to write with write protect on.

27 Checksum error in header.

28 Data extends into next block.

29 Disk id mismatch.

30 General syntax error

31 Invalid command.

32 Long line.

33 Invalid filename.

34 No file given.

39 Command file not found.

50 Record not present.

51 Overflow in record.

52 File too large.

60 File open for write.

61 File not open.

62 File not found.

63 File exists.

64 File type mismatch.

65 No block.

66 Illegal track or sector.

67 Illegal system track or sector.

70 No channels available.

71 Directory error.

72 Disk full or directory full.

73 Power up message, or write attempt with DOS Mismatch.

74 Drive not ready.

52

DESCRIPTION OF DOS ERROR MESSAGES

NOTE: Error message numbers less than 20 should be ignored with the exception of 01

which gives information about the number of files scratched with the SCRATCH com

mand.

20: READ ERROR (block header not found)

The disk controller is unable to locate the header of the requested data block.

Caused by an illegal block number, or the header has been destroyed.

21: READ ERROR (no sync character)

The disk controller is unable to detect a sync mark on the desired track. Caused

by misalignment of the read/writer head, no diskette is present, or unformatted

or improperly seated diskette. Can also indicate a hardware failure.

22: READ ERROR (data block not present)

The disk controller has been requested to read or verify a data block that was

not properly written. This error message occurs in conjunction with the BLOCK

commands and indicates an illegal track and/or block request.

23: READ ERROR (checksum error in data block)

This error message indicates that there is an error in one or more of the data

bytes. The data has been read into the DOS memory, but the checksum over the

data is in error. This message may also indicate grounding problems.

24: READ ERROR (byte decoding error)

The data or header as been read into the DOS memory, but a hardware error has

been created due to an invalid bit pattern in the data byte. This message may also

indicate grounding problems.

25: WRITE ERROR (write-verify error)

This message is generated if the controller detects a mismatch between the writ

ten data and the data in the DOS memory.

26: WRITE PROTECT ON

This message is generated when the controller has been requested to write a data

block while the write protect switch is depressed. Typically, this is caused by us

ing a diskette with a write* protect tab over the notch.

27: READ ERROR (checksum error in header)

The controller has detected an error in the header of the requested data block.

The block has not been read into the DOS memory. This message may also in

dicate grounding problems.

28: WRITE ERROR (long data block)

The controller attempts to detect the sync mark of the next header after writing a

data block. If the sync mark does not appear within a pre-determined time, the

error message is generated. The error is caused by a bad diskette format (the

data extends into the next block), or by hardware failure.

53

29: DISK ID MISMATCH

This message is generated when the controller has been requested to access a

diskette which has not been initialized. The message can also occur if a diskette

has a bad header.

30: SYNTAX ERROR (general syntax)

The DOS cannot interpret the command sent to the command channel. Typical

ly, this is caused by an illegal number of file names, or patterns are illegally used.

For example, two file names may appear on the left side of the COPY com

mand.

31: SYNTAX ERROR (invalid command)

The DOS does not recognize the command. The command must start in the first

position.

32: SYNTAX ERROR (invalid command)

The command sent is longer than 58 characters.

33: SYNTAX ERROR (invalid file name)

Pattern matching is invalidly used in the OPEN or SAVE command.

34: SYNTAX ERROR (no file given)

the file name was left out of a command or the DOS does not recognize it as

such. Typically, a colon (:) has been left out of the command.

39: SYNTAX ERROR (invalid command)

This error may result if the command sent to command channel (secondary ad

dress 15) is unrecognized by the DOS.

50: RECORD NOT PRESENT

Result of disk reading past the last record through INPUT#, or GET#, com

mands. This message will also occur after positioning to a record beyond end of

file in a relative file. If the intent is to expand the file by adding the new record

(with a PRINT# command), the error message may be ignored. INPUT or GET

should not be attempted after this error is detected without first repositioning.

51: OVERFLOW IN RECORD

PRINT# statement exceeds record boundary. Information is cut off. Since the

carriage return is sent as a record terminator is counted in the record size. This

message will occur if the total characters in the record (including the final car

riage return) exceeds the defined size.

52: FILE TOO LARGE

Record position within a relative file indicates that disk overflow will result.

60: WRITE FILE OPEN

This message is generated when a write file that has not been closed is being

opened for reading.

54

61: FILE NOT OPEN

This message is generated when a file is being accessed that has not been opened

in the DOS. Sometimes, in this case, a message is not generated; the request is

simply ignored.

62: FILE NOT FOUND

The requested file does not exist on the indicated drive.

63: FILE EXISTS

The file name of the file being created already exists on the diskette.

64: FILE TYPE MISMATCH

The file type does not match the file type in the directory entry for the requested

file.

65: NO BLOCK

This message occurs in conjunction with the B-A command. It indicates that the

block to be allocated has been previously allocated. The parameters indicate the

track and sector available with the next highest number. If the parameters are

zero (0), then all blocks higher in number are in use.

66: ILLEGAL TRACK AND SECTOR

The DOS has attempted to access a track or block which does not exist in the

format being used. This may indicate a problem reading the pointer to the next

block.

67: ILLEGAL SYSTEM T OR S

This special error message indicates an illegal system track or block.

70: NO CHANNEL (available)

The requested channel is not available, or all channels are in use. A maximum of

five sequential files may be opened at one time to the DOS. Direct access chan

nels may have six opened files.

71: DIRECTORY ERROR

The BAM does not match the internal count. There is a problem in the BAM

allocation or the BAM has been overwritten in DOS memory. To correct this

problem, reinitialize the diskette to restore the BAM in memory. Some active

files may be terminated by the corrective action. NOTE: BAM= Block

Availability Map

72: DISK FULL

Either the blocks on the diskette are used or the directory is at its entry limit.

DISK FULL is sent when two blocks are available on the 1541 to allow the cur

rent file to be closed.

55

73: DOS MISMATCH (73, CBM DOS V2.6 1541)

DOS 1 and 2 are read compatible but not write compatible. Disks may be inter

changeably read with either DOS, but a disk formatted on one version cannot be

written upon with the other version because the format is different. This error is

displayed whenever an attempt is made to write upon a disk which has been for

matted in a non-compatible format. (A utility routine is available to assist in

converting from one format to another.) This message may also appear after

power up.

74: DRIVE NOT READY

An attempt has been made to access the 1541 Single Drive Floppy Disk without

any diskettes present in either drive.

56

APPENDIX C: Demonstration Disk Programs

1. DIR

4 0PEN2..S. 15

5 pp. i nt " rr : goto .10000

19 OPEN1,3,0,"$0"

20 GET#1,R*,B*

30 OET#1,R*,B*

40 GETttl,fl$,B$

50 C=0

60 IF fi*O"" THEN C=RSC<R*>

70 IF B$O"" THEN C«C+RSC<B*>#256

80 PR I NT " 3" MID* < STR$ < C > , 2 > ; TRB < 3) ; " ■" :■

90 GET#1,B$IF STO0 THEN 1000

100 IF B*OCHR*<34> THEN 90

110 GET* 1, B$: IF B*OCHR* ■■ 34 > THEN PR INTB*.: : GOTO 110

120 GET#1.B* IF B*=CHR*<32> THEN 120

130 PRINT TRB<18>;:C*=""

140 C*=C*+B*:GET#1,B$:IF B*<>"" THEN 140

150 PRINT"S"LEFT*<X*,3>

160 GET T$:IF T*O"" THEN GOSUB 2000

170 IF ST=0 THEN 30

1000 PRINT" BLOCKS FREE"

1010 CLOSE1=GOTO 10000

2000 IF T$="Q" THEN CLOSE1:END

2010 GET T*:IF T$="" THEN 2000

2020 RETURN

4000 REM DISK COMMRND

4010 C$="":PRINT">";

4011 GETB*:IFB$="" THEN4011

4012 PRINTB*;=IF B*»CHR*<13> THEN 4020

4013 C*=C**B*:GOTO 4011

4020 PRINT#2,C*

5000 PRINT"S":

5010 GET#2, R* = PR INTR*.; : IF fl*OCHR* <. 13) GOTO5010

5020 PRINT"""

10000 PRINT "D-DIRECTORY"

10010 PRINT ">-DISK COMMRND"

10020 PRINT "Q-QUIT PROGRRM"

10030 PRINT "S-DISK STRTUS "

10100 GETR*:IFR*=IMITHEN10100'

10200 IF R$="D" THEN 10

10300 IF fl*="." OR R*=">" OR R*=">" THEN 4000

U3310 IF R$=MQn THEN END

10320 IF R*="S" THEN 5000

10999 GOTO 10100

57

2. VIEW BAM

100 REM ********************************

101 REM * VIEW BRM FOR VIC & 64 DISK *

102 REM *#*##**##♦♦**#**#♦**#♦♦♦♦**♦##**

105 0PEN15,8,15

110 PRINT#15,"I0":NU*="N/fl N/fl N/R N/fi NXR":Z4=1

120 0PEN2.3..2,"#"

130 V*

140 x*=" i

150 DEF FNS<Z> = 2t'.":S-lHT''S/S>*8> flND <SB< INT<S/8> > >

160 PRINT#15,"Ul:";2;0.:l8;0

170 PRINT#15."B-P";2;l

180 PRINT11:]";

190 V«22:X=l:GOSUB430

200 FOR I =0TO20 : PR I NT : PR I NT " m" RIGHT* (. STR* (.1 > + " " .. 3 > .; : NEXT

210 GET#2,R*

220 GET#2,R*

230 GET#2,R$

240 TS»0

250 FORT=1TO17:GOSUB450

260 V=22:X=T+4:GOSUB430 = GOSUB540:NEXT

270 FORI■1TO2000•NEXT:PRINT"H"

280 V=22:X=l:GOSUB430

290 FORI»0TO20:PRINT:PRINT"Tn"RIGHT*'rSTR$a::' + " ",3>.; : NEXT

300 F0RT*18T035

310 GOSUB450

320 V=22 = X=T-13:G0SUB436•GOSUB540:NEXT

330 FORI=1TO1000:NEXT

340 PRINT"^S»»!lHW"

350 PRINT#15,"B-P".:2.: 144

360 N$=""=FORI=1TO20:GET#2,B$■N*=N*+R*:NEXT

376 PRINT" "N$" "TS-17;"BLOCKS FREE"

380 FORI=1TO4000:NEXT

390 PRINT"H"

400 INPUT"MWW»MRNOTHER DISKETTE Nliil" .: R$

410 IFR*=IIV"THENRUN

420 IFR*O"V"THENEND

430 PR INTLEFT* < V*, V) LEFT* (.)<$, X > " II" ;

44© RETURN

450 GET#2..SC$:SC=RSC<RIGHT$O:HR*':.0>+SC*, 1)>

460 TS=TS+SC

470 GET#2,fi*:IFR*=""THENR*=CHR* <0>

430 SBC0)*RSC<R*>

490 GET#2,R*:IFR*=""THEHR*=CHR*<0 >

500 SB<l>=RSC<fif:)

510 GET#2, f\t ■ I FR*= " " THEHR*=CHR* •'. 0)

520 SB<2>=RSC''R$)

53S RETURN

540 PRINTMMH"RIGHT*<STR*<T> , 1 > .: "lim11;

550 REM PR I NTT" "SC" "SE<0>" "SB<1>" " SB (. 2 ■' =CHR* < 0)

560 I FT>24fiNDS= 18THEN : PR INTMID* < NU*.. Z4 - 1 > : : G0T0668

570 FORS»0TO20

580 IFT<18THEN620

590 I FT>30RNDS= 17THEN : PR 1 NTM ID* < NU$, Z4, 1).; = GOTOS60

609 I FT>24RNDS= 18THEN : PR I NTM ID* < NU*, Z4, 1) .: : GOTO660

610 IFT>24flNDS=19THENPRINTMID* < NU*.24,1>; :GOTO660

62© I FT> 1 7RNDS=20THENPR I NTM I D£ < NU*, Z4, 1 > .: Z4=Z4+1 : GOTO660

530 PRINT" SJ" :

640 IF FNS<S''~0 THEN PR I NT "4" : : GOTO660

658 PRINT"!i+" .: = REMPTnHTf.rSTR^-rS) ■ 1) : Z4, 1 >.: • G0T072

660 PR I NT "Hie!";

670 NEXT

680 RETURN

58

3. DISPLAY T&S

100 REM******************************

11@ REM* DISPLflV flNV TRflCK % SECTOR *

120 REM* ON THE DISK TO THE SCREEN *

130 REM* OR THE PRINTER *

140 REM******************************

150 PR I NT "mOM "

160 PRINT"DISPLflV BLOCK CONTENTS"

165 FRTNT" ":

170 REM******************************

180 REM* SET PROGRflM CONSTflNT *

190 REM******************************

200 SP*= " " : NL*=CHR* < 0 > : H:■:$= " 01 23456789flBCDEF "

210 FS$="" FOR I =64 TO 95 : FS*=FS*+" S"+CHR$< I :> + "■"•• NEXT I

220 SS*=" "FOR 1 = 192 TO 223 : SS*=SS*+" ST+CHR$ <.l >+"■": NEXT I

240 DIM fl*<15),NB<2>

251 D$="0"

253 PRINT" SSlCREENSliBiiKiilDR QllSFa?INTER"

254 GETJJ*=IF JJ*=IIM THEN254

255 IF ,T,T*="S"THENPRINT" WJSiiCREENS"

256 IF J,T$="F"THENPRINT" MSFRINTER!"

260 OPEN15,8,15,"I"+D*:GOSUB 650

265 0PEN4..4

270 OPEN 2,8,2,"#" GOSUB 658

280 REM******************************

290 REM* LORD TRflCK FIND SECTOR *

300 REM* INTO DISK BUFFER *

310 REM******************************

320 INPUT"ttirrRflCK, SECTOR";T,S

330 IF T=0 OR T>35 THEN PRINT*15,"I"D$:CL0SE2:CL0SE4:CLOSE15-PRINT"END"=END

340 IF JJ*="S" THEN PRINT"J»»rTRflCK"T" SECTOR"S"M"

341 IF J,T$="P" THEN PRINT#4 : PRINT#4, "TRflCK"T" SECTOR"S ■ PRINT#4

350 PR I NT# 15 ■ " U1 : 2, " D$.: T; S : GOSUB650

360 REM******************************

370 REM* REflD BVTE 0 OF DISK BUFFER *

398

400 PRINT#15,"B-P:2,1"

410 PRINT#15,"M~R

420 GET#^5,fl$<0>:IFR*<0>=""THENfl*<0>=NL*

428 IF JJ$="S"THEN430

430 IF JJ$="P"THEN460

431 REM******************************

432 REM* REflD & CRT DISPLflV *

433 REM* REST OF THE DISK BUFFER *

434 REM******************************

436 K«l:NBa>»RSC<fl*<0>>

438 FOR J=0 TO 63=IF J=32 THEN GOSUB 710:IF Z*="NMTHEN J=80:GOTO 458
440 FOR I=K TO 3

442 GET#2,fl*<I>:lF fl*<I>="" THEN fl$<I>«NL*
444 IF K=l flND I<2 THEN NB<2>=flSC<fl*<I)>

446 NEXT I:K=0

448 fl*="":B*=":"= N»J*4:GOSUB 790 = fl*=fl*+":"

450 FOR 1=0 TO 3:N=flSC<fl*a>>:G0SUB 790
452 C*=fl*<I>:GOSUB 850=B*=B*+C*

454 NEXT I:IF JJ*="S" THEN PRINTflfB*

458 NEXT ,T:G0T0571

59

460 REM******************************

462 REM* REflD & PRINTER MSPLflY *

464 REM******************************

466 K»l:NB<l>-flSC<fl*<0>>
468 FOR J=0 TO 15

47@ FOR I»K TO 15

472 GET#2,R*(I>:IF R*(I> = "" THEN R*<I>=NL$

474 IF K=l RND I<2 THEN NB<2>=RSC<fl$<I>>

476 NEXT I:K=0

478 R*= " " ■ B*= " : " : N=J* 16 : GOSUB 790 : fl*=R*+ " : "

480 FOR 1*0 TO 15:N=RSCCR$a>> :GOSUB 790: IF Z*="N"THEN J=40: GOTO 571

482 Cf*fl*<n: GOSUB 850 : B*=B*+C$

484 NEXT I

486 IF J,T*="P" THEN PRINT#4,RB

488 NEXT J=G0T0571

571 REM******************************

572 REM# NEXT TRRCK RND SECTOR *

573 REM*«***«****4(***if!*)K«)K*«««)»!*«)4(«)K*

575 PRINT"NEXT TRRCK RND SECTOR"NB<1)NB<2> "W"
580 PRINT"DO VOU UflNT NEXT TRRCK RND SECTOR"

590 GET Z$=IF Z$="" THEN590

600 IP Z*="V" THEN T=NBa>:S=NB<2>-GOTO330

610 IF Z*="N" THEN 32©

620 GOTO 590

630

640 REM* SUBROUTINES

650

66Q REM* ERROR ROUTINE

670

680 INPUT#15,EN,EM$,ET,ES:IF EN=0 THEN RETURN

690 PRINT"8©ISK ERROR""EN,EM$,ET,ES

700 END

710 REM******************************

720 REM* SCREEN CONTINUE MESSRGE *

730 REM******************************

740 PR I NT " !*»i»HCONT I HUE (. V,-'N > "

750 GETZ*:IF Z*="" THEN 750

760 IF Z*="N" THEN RETURN

770 IF Z*O"Y" THEN 750

780 PRINT'TTTRRCK" T " SECTOR"S "3":RETURN

790 REM******************************

800 REM* DISK BVTE TO HEX PRINT *

810 REM******************************

320 RJ=INT<N/1.6> = R*=R*+MID*CHX*, fll + 1, 1 >

830 R2= I NT (. N-16*R 1 > : R*=R*+M ID* < HX$, R2+1 , 1 ••

840 R*=R$+SP*:RETURN

850 REM******************************

860 REM* DISK BVTE TO RSC DISPLRV *

870 REM* CHRRRCTER *

880 REM******************************

89fl IF flSC<CC*><32 THEN C*=" ": RETURN

910 IF RSCO::*:K128 OR RSC<C*)>159 THEN RETURN

920 C*=M ID* •:: SS*, 3* <. RSC < C* > -127 > , 3 > : RETURN

60

4. CHECK DISK

1 REM CHECK DISK — VER 1.4

2 DN=8:REM FLOPPY DEVICE NUMBER

5 DIMT<100>:DIMSC100>:REM BRD TRRCK, SECTOR RRRfiV

9 PRINT'THWM "

10 PRINT" CHECK DISK PROGRflM"

12 PRINT11 "

20 D*»"0"

30 0PEN15.DN.. 15

35 PRINT#15,"V"D*

45 NX=RND<:TI)*255

50 R*="":FORIa1T0255 = R*=R*+CHR$ <255RND <I+NH > >:NEXT

60 GOSUB900

70 0PEN2,DN,2,"#"

60 PRINT:PRINT#2,R*.:

83 T=i:S=0

90 PRINT#15.. "B-R:"D*;T.:S

100 INPUT#15,EN,EM$..ET,ES

110 IFEN=0THEN130

115 IFET*0THEN200:REM END

120 PRINT#15, "B-fl : "D*.: ET.: ES: T=ET = S=ES

130 PRINT#15,"U2:2,"D$.;T;S

134 NB«=NB+1= PRINT" CHECKED BLOCKSMNB

135 PRINT" TRRCK IIIIIT " SECTOR Wiir'S'Tn11

140 INPUT#15..EN,EM*,ES,ET

150 IF EN=0THEN85

160 T<J>*T:S<J>=S:J=J+1

165 PRINT"WWBRD BLOCK III ,T;S""

170 G0T035

200 PRINT#15,"I"D*

210 GOSUB900

212 CL0SE2

215 IFJ=0THENPRINT"MflWM»NO BRD BLOCKS!":END

217 0PEN2,DN,2,"#n

218 PRINT" WWBRD BLOCKS"> "TRRCK","SECTOR"

220 FORI=0TOJ-1

230 PRINT#15, "B-R: " .: D*, T< I > ; SC I >

240 PRINT, J(I).Sd)

250 NEXT

260 PR I NT" Ml" J" BRD BLOCKS HRVE BEEN RLLOCflTED"

270 CL0SE2=END

900 INPUT#15,EN,EM$,ET,ES

910 IF EN=0 THEN RETURN

920 PRINT"XMERROR #"EN,EM*;ET;ES""

930 PRINT#15,"I"D*

61

5. PERFORMANCE TEST

1000 REM PERFORMflNCE: TEST 2.0

1010 ■

1020 REM VIC-20 RND COMMODORE 64

1030 REM SINGLE FLOPPY DISK DRIVE
1040 :

1050 OPEN l,8,15:0PEN15,8,15
1060 LT-35

1070 LT*=STR*<LT>

1fi:-:tt NT=30

1090 PRINT'TM.

1100 PRINT" PERFORMRHCE TEST"

111© PRINT" "

1128 PRINT

1130 PRINT" INSERT SCRfiTCH"

1140 PRTNT

1150 PRINT" DISKETTE IN DRIVE"

1160 PRINT

1170 PRINT"!!! PRESS SRETURNS"

1180 PRINT

1190 PRINT" WHEN REflDVHT

1200 FOR 1=0 TO 50-GET fl*:NEXT

121.0 GET R*:IF fl*OCHR*<13> THEN 1210

1220 :

1230 =

1240 TI*«"000000"

1250 TT=18

1260 PRINT#1,"N0:TEST DISK,00"

1270 Cl*=" DISK NEW COMMRND "+CHR$U3>

1280 C2*="W WRIT RBOUT 80 SECONDS"

1290 CC*=Clf+C2*:GOSUB 1840

1300 IF TKNTTHEN1370

1310 PRINT"WSVSTEM IS"

1320 PRINT"W NOT RESPONDING"

1330 PRINT" C0RRECTL7 TO COMMflNDS"

1340 GOSUB 1880

1350 :

1360 :

1370 PRINT"MDRIVE PRSS"

1380 PRINT" • MECHRNICRL TESTM"

1390 TT=21

1400 OPEN 2,8,2, "0: TEST FILE,S,W

1410 CC*="OPEN WRITE FILE11 : GOSUB 1840

L420 CHa2:CC*="WRITE DRTR11 : GOSUB 1930

1430 CC*="CLOSE "+CC* :GOSUB 1840

1440 OPEN 2.8,2,"0:TEST FILE,S,R"

1450 CC*="OPEN RERD FILE" :GOSUB 1840

1460 CH=2=GOSUB 1990

1470 PRINT#1,"S0:TEST FILE"

1480 CC*="SCRRTCH FILEW":TT=1 :GOSUB 1840

1490 :

1500 :

1510 TT=21

1520 OPEN 4,8,4,»#M

1530 NNV:= < 1+RND < TI > #254+NNX > RND255 = PR I NT# 1, " B-P "; 4.: NNX

1540 NNS='IH: FOR i = i TO 255 = NN*=NN*+CHR$a): NEXT

1550 PRINT# 4,NN*;

1560 PRINT# 1,"U2:M.:4.:0.:LT.;0

1570 CC*="WRITE TRRCK"+LT*:GOSUB 1840

1580 PRINT#l,"U2:";4.;0.;i;0

1590 CC*="WRITE TRRCK 1" :GOSUB 1840

1600 PRINT#l,"Ui:";4.:0.:LT.;0

1610 CC*="RERD TRRCK"+LT* :GOSUB 1840

1620 PRINT#l,IIUi:'I;4.;0;lJ0

1630 CC$="RERD TRRCK 1" -GOSUB 1840

1640 CLOSE 4

1650 '•

1660 •

62

1676 PRINT"M UNIT HflS PFISSED"

1680 PRINT" PERFORMflNCE TEST!"

1690 PRINT"W PULL DISKETTE FROM"

1700 PRINT"W DRIVE BEFORE TURNING"

1710 PRINT" POWER OFF."

1720 END

1730 :

1740 =

1750 PRINT" MCONTINUE (V/N)?";

1760 FOR 1*0 TO 50-" GET fl* = NEXT

1770 GET fl*=IF fl*="" THEN 1770

1780 PRINT fl$"W"

1790 IF fl*="N" THEN END

1800 IF fl*="V" THEN RETURN

1810 GOTO 1760

1820 :

1830 :

1840 PRINT CC*

1850 INPUT* 1,EN,EM*,ET,ES

1860 PR I NTTflB < 12)"" EN; EM*.; ET; ES;""

1870 IF EN<2 THEN RETURN

1880 PRINT"W UNIT IS FfllLING"

1890 PRINT"W PERFORMflNCE TEST"

1900 TM*=TI*:GOSUB 1750=TI*=TM*=RETURN

1910 :

1920 :

1930 PRINT"WRITING DflTfl"

1940 FOR 1=1000 TO 2000:PRINT#CH,I=NEXT

1950 GOSUB1850

I960 CLOSE CH:RETURN

1979 =

1980 :

1990 PRTNT"REflDING DflTfl"

2800 GETfl*

2010 FOR 1=1000 TO 2000

2020 INPUT# CH,J

2030 IF JO I THEN PRINT" BFEflD ERROR = ■" ■ GOSUB 1850
NEXT

1850

CH:RETURN

63

APPENDIX D: DISK FORMATS

NOTE

Not to scale

POINTERS TO LINK \
TOGETHER ALL BLOCKS \

SYNC 08 IDI ID2 TRACK BLOCK
CHECK

SUM
GAPI SYNC 07

WITHIN A FILE

I i

254 BYTES

OF DATA

CHECK-

SUM

J

GAP

1540/1541 Format: Expanded View of a Single Sector

64

BLOCK DISTRIBUTION BY TRACK

Track number

1 to 17

18 to 24

25 to 30

31 to 35

Block Range

Oto 20

Oto 18

Oto 17

Oto 16

Total

21

19

18

17

1540/1541 BAM FORMAT

Track 18, Sector 0.

BYTE

0,1

2

3

4—143

CONTENTS

18,01

65

0

DEFINITION

Track and block of first directory block.

ASCII character A indicating 4040 format.

Null flag for future DOS use.

Bit map of available blocks for tracks 1—35.

*1 = available block

0 = block not available

(each bit represents one block)

65

1540/1541 DIRECTORY HEADER

Track 18, Sector 0.

BYTE

144—161

162—163

164

165—166

166—167

177—255

CONTENTS

160

50,65

160

0

DEFINITION

Disk name padded with shifted spaces.

Disk ID.

Shifted space.

ASCII representation for 2A which is DOS version

and format type.

Shifted spaces.

Nulls, not used.

Note: ASCII characters may appear in locations 180 thru 191 on some diskettes.

SEQUENTIAL FORMAT

BYTE

0—1

2—256

DEFINITION

Track and block of next sequential data block.

265 bytes of data with carriage return as record terminators.

PROGRAM FILE FORMAT

BYTE

0,1

2—256

DEFINITION

Track and block of next block in program file.

265 bytes of program info stored in CBM memory format (with key

words tokenized). End of file is marked by three zero bytes.

66

DIRECTORY FORMAT

Track 18, Block 1 for 1540/1541

BYTE

0—1

2—31

34—63

66—95

98—127

130—159

162—191

194—123

226—255

DEFINITION

Track and block of next directory block.

*File entry 1

*File entry 2

♦File entry 3

♦File entry 4

♦File entry 5

♦File entry 6

♦File entry 7

♦File entry 8

♦STRUCTURE OF SINGLE DIRECTORY ENTRY

BYTE

0

1—2

3—18

19—20

21

22—25

26—27

28—29

CONTENTS

128 +type

DEFINITION

File type OR'ed with $80 to indicate properly closed

file.

TYPES: 0 = DELeted

1 = SEQential

2 = PROGram

3 = USER

4 = RELative

Track and block of 1st data block.

File name padded with shifted spaces.

Relative file only: track and block for first side sector

block.

Relative file only: Record size.

Unused.

Track and block of replacement file when OPEN® is

in effect.

Number of blocks in file: low byte, high byte.

67

RELATIVE FILE FORMAT

DATA BLOCK

BYTE

0,1

2—256

DEFINITION

Track and block of next data block.

254 bytes of data. Empty records contain FF (all binary ones) in the

first byte followed by 00 (binary all zeros) to the end of the record.

Partially filled records are padded with nulls (00).

SIDE SECTOR BLOCK

BYTE

0-1

2

3

4—5

6—7

8-9

10—11

12—13

14—15

16—256

DEFINITION

Track and block of next side sector block.

Side sector number (0-5)

Record length

Track and block of first side sector (number 0)

Track and block of second side sector (number 1)

Track and block of third side sector (number 2)

Track and block of fourth side sector (number 3)

Track and block of fifth side sector (number 4)

Track and block of sixth side sector (number 5)

Track and block pointers to 120 data blocks

68

INDEX

A

Assembly Language, 50

B

BLOCK-ALLOCATE, 30-31, 51

Block Availability Map (BAM), 9-10, 25, 28, 30-31, 64-68

BLOCK-EXECUTE, 45, 51

BLOCK-FREE, 31, 51

BLOCK-READ, 28-29, 31-32, 34-35, 51

Blocks, 3, 34-35, 64-68

BLOCK-WRITE, 30, 32, 34-35, 51

Buffer, 3, 33

BUFFER-POINTER, 33-34, 51

C

CLOSE, 19

COPY, 16, 51

D

Data Channel, 29

Demonstration Disk Programs, 57-63

Device Number, 20, 48-49

Directory, 9-10, 24-27, 66-67

Disk Controller, 45-47

Disk Operating System (DOS), 10-11, 13, 25-28, 31, 33, 53-56

DOS Support Program, 13, 18

Drive Speeds, 7

DUPLICATE, 18, 51

E

End-of-file (EOF), 21

Error Channel, 18, 43-45

Error Messages, 52-56

F

FORMAT (see NEW)

G

GET#, 23

INITIALIZE, 17, 46, 51

INPUT#, 18, 21-22, 44

L

LOAD, 1, 8-15, 19

69

M

Mailing List Program, 39-40

MEMORY-EXECUTE, 46, 51

MEMORY-READ, 45, 51

MEMORY-WRITE, 46, 51

N

NEW, 15, 51

O

Open, 14-15, 20

P

Pattern Matching, 11

POSITION, 38-43, 51

PRINT#, 14-15, 21

Program Files (PRG), 20, 26, 56

R

Random Files, 3, 28-33

Relative Files (REL), 1, 3, 5, 20, 33-44, 68

RENAME, 16, 51

S

SAVE, 1, 12, 17

SCRATCH, 17, 51

Sectors, 3, 64-68

Sequential Files (SEQ), 1, 3, 5, 20-23, 26-27, 31-32, 44, 66

Serial Bus Interface, 2, 6-7

Side Sector, 36-37

Specifications, 2-3

T

Tracks, 5, 28, 33, 64-68

U

USER, 47, 51

User Files (USR), 20, 26, 34-35

V

VALIDATE, 17, 51

VERIFY, 13, 51

W

Wedge, 7

Wildcards, 11

70

COMMODORE SALES CENTERS

Commodore Business Machines, Inc.

1200 Wilson Drive

West Chester, PA 19380, U.S.A.

Commodore Business Machines Limited

3370 Pharmacy Avenue, Agincourt

Ontario, M1W 2K4, Canada

Commodore Business Machines (UK) Ltd.

1, Hunters Road, Weldon

Corby, Northants, NN17 1QX, England

Commodore Bueromaschinen GmbH

PO BOX 710126, Lyonerstrasse 38

6000 Frankfult 71, West Germany

Commodore Italiana S.P.A.

Via Fratelli Gracchi 48

20092 Cinisello Balsamo, Milano, Italy

Commodore Business Machines Pty Ltd.

5 Orion Road

Lane Cove, NSW 2066, Australia

Commodore Computer B.V.

Kabelweg 88

1014 BC AMSTERDAM, Netherlands

Commodore AG(Scheweiz)

Aeschenvorstadt 57

Ch-4010 Basel, Switzerland

Commodore Computer NV-SA

Europalaan 74

1940 ST-STEVENS-WOLUWE, Belgium

Commodore Data AS

Bjerrevej 67

Horsens, Denmark

