PRELIMINARY DATA SHEET MAY, 1976 ### MCS6500 MICROPROCESSORS ### The MCS6500 Microprocessor Family Concept ---- The MCS6500 Series Microprocessors represent the first totally software compatible microprocessor family. This family of products includes a range of software compatible microprocessors which provide a selection of addressable memory range, interrupt input options and on-chip clock osscillators and drivers. All of the microprocessors in the MCS6500 group are software compatible within the group and are bus compatible with the M6800 product offering. The family includes five microprocessors with on-board clock oscillators and drivers and four microprocessors driven by external clocks. The on-chip clock versions are aimed at high performance, low cost applications where single phase inputs, crystal or RC inputs provide the time base. The external clock versions are geared for the multi processor system applications where maximum timing control is mandatory. All versions of the microprocessors are available in 1 MHz and 2 MHz ("A" suffix on product numbers) maximum operating frequencies. ### Features of the MCS6500 Family - . Single five volt supply - . N channel, silicon gate, depletion load technology - . Eight bit parallel processing - . 56 Instructions - . Decimal and binary arithmetic - . Thirteen addressing modes - . True indexing capability - . Programmable stack pointer - . Variable length stack - . Interrupt capability - . Non-maskable interrupt - . Use with any type or speed memory - . Bi-directional Data Bus - . Instruction decoding and control - . Addressable memory range of up to 65K bytes - . "Ready" input - . Direct memory access capability - . Bus compatible with MC6800 - . Choice of external or on-board clocks - . 1MHz and 2MHz operation - . On-the-chip clock options - * External single clock input - * RC time base input - * Crystal time base input - . 40 and 28 pin package versions - . Pipeline architecture ### Members of the Family Microprocessors with On-Board Clock Oscillator —MCS6502 —MCS6503 —MCS6504 —MCS6505 MCS6506 MCS6506 MCS6506 ### Comments on the Data Sheet The data sheet is constructed to review first the basic "Common Characteristics" - those features which are common to the general family of microprocessors. Subsequent to a review of the family characteristics will be sections devoted to each member of the group with specific features of each. Note: 1. Clock Generator is not included on MCS6512,13,14,15 Addressing Capability and control options vary with each of the MCS6500 Products. MCS6500 Internal Architecture ### MAXIMUM RATINGS | RATING | SYMBOL | VALUE | UNIT | |-----------------------|--------|--------------|------| | SUPPLY VOLTAGE | Vcc | -0.3 to +7.0 | Vdc | | INPUT VOLTAGE | Vin | -0.3 to +7.0 | Vdc | | OPERATING TEMPERATURE | TA | 0 to +70 | °C | | STORAGE TEMPERATURE | TSTG | -55 to +150 | °C | This device contains input protection against damage due to high static voltages or electric fields; however, precautions should be taken to avoid application of voltages higher than the maximum rating. ELECTRICAL CHARACTERISTICS (Vcc = 5.0V ± 5%, Vss = 0, TA = 25° C) \emptyset_1 , \emptyset_2 applies to MCS6512, 13, 14, 15, \emptyset_0 (in) applies to MCS6502, 03, 04, 05 and 06 | CHARACTERISTIC | SYMBOL | MIN. | TYP. | MAX. | UNIT | |---|----------------------|------------------------|------|------------------------|--| | Input High Voltage | VIH | Vss + 2.4
Vcc - 0.2 | - | Vcc
Vcc + 0.25 | Vdc | | Input Low Voltage | VIL | Vss - 0.3
Vss - 0.3 | - | Vss + 0.4
Vss + 0.2 | Vdc | | Input High Threshold Voltage RES, NMI, RDY, IRQ, Data, S.O. | VIHT | Vss + 2.0 | | _ | Vdc | | Input Low Threshold Voltage RES, NMI, RDY, IRQ, Data, S.O. | V _{ILT} | _ | | Vss + 0.8 | Vdc | | Input Leakage Current $(V_{in} = 0 \text{ to } 5.25V, \text{ Vcc} = 0)$ $\text{Logic (Excl.RDY, S.O.)}$ $\emptyset_{1}, \emptyset_{2}$ $\emptyset_{0}(\text{in})$ | Iin | - | | 2.5
100
10.0 | μ Α
μ Α
μ Α | | Three-State (Off State) Input Current (V = 0.4 to 2.4V, Vcc = 5.25V) Data Lines | ITSI | | | 10 | μА | | Output High Voltage (I _{LOAD} = -100µAdc, Vcc = 4.75V) SYNC, Data, AO-A15, R/W | уон | Vss + 2.4 | | | Vdc | | Output Low Voltage (I _{LOAD} = 1.6mAdc, Vcc = 4.75V) SYNC, Data, AO-A15, R/W | V _{OL} | | | Vss + 0.4 | Vdc | | Power Dissipation | PD | | . 25 | .70 | W | | Capacitance (V _{in} = 0, T _A = 25°C, f = 1MHz) Logic | C
C _{in} | | | 10 | pF | | Data
A0-A15, R/W, SYNC | Cout | - | - | 15
12 | | | Ø _{o(in)}
Ø ₁ | C _Ø o(in) | | 30 | 50 | | | Ø ₂ | Cø2 | - 1 | 50 | 80 | | Note: IRQ and NMI require 3K pull-up resistors. "REF." means Reference Points on clocks. Note: ## Clock Timing - MCS6512, 13, 14, 15 | CHARACTERISTIC | SYMBOL | MIN. | TYP. | MAX. | UNIT | |--|------------------|------|------|------|------| | Cycle Time | TCYC | 1000 | 1 | 1 | nsec | | Clock Pulse Width Ø1 (Measured at Vcc - 0.2v) Ø2 | PWH Ø1
PWH Ø2 | 430 | - | | nsec | | Fall Time
(Measured from 0.2v to Vcc - 0.2v) | T | | - | 25 | nsec | | Delay Time between Clocks
(Measured at 0.2v) | T _D | 0 | | 1 | nsec | | CHARACTERISTIC | SYMBOL | MIN. | TYP. | MAX. | UNITS | |--|----------|----------------------|------|------------------------|-------| | Cycle Time | TCYC | 1000 | 1 | 1 | su | | φo(IN) Pulse Width (measured at 1.5V) | PWH¢₀ | 460 | 1 | 520 | su | | φo(IN) Rise, Fall Time | TR¢, TF¢ | - | 1 | 10 | ns | | Delay Time Between Clocks (measured at 1.5V) | T_{D} | 5 | 1 | - | ns | | φ1(OUT) Pulse Width (measured at 1.5V) PWHφ1 | РWНФ1 | $PWH\phi_{OL}^{-20}$ | 1 | То
фнма | ns | | φ ₂ (OUT) Pulse Width (measured at 1.5V) PWHφ ₂ | Ринф2 | $PWH\phi_{OH}^{-40}$ | 1 | РWНФ _{ОН} -10 | ns | | φ ₁ (OUT), φ ₂ (OUT) Rise, Fall Time (measured .8V to 2.0 V) (Load = 30pf + 1 TTL) | TR, TF | 1 | 1 | 25 | ns | ### READ/WRITE TIMING | CHARACTERISTIC | SYMBOL | MIN. | TYP. | MAX. | UNITS | |------------------------------------|--------|------|------|------|-------| | Read/Write Setup Time from MCS6500 | TRWS | 1 | 100 | 300 | ns | | Address Setup Time from MCS6500. | TADS | 1 | 100 | 300 | ns | | Memory Read Access Time | TACC | - | - | 575 | ns | | Data Stability Time Period | TDSU | 100 | - | 1 | ns | | Data Hold Time - Read | THR | 10 | 1 | 1 | ns | | Data Hold Time - Write | THW | 30 | 09 | 1 | ns | | Data Setup Time from MCS6500 | Twds | 1 | 150 | 200 | ns | | RDY, S.O. Setup Time | TRDY | 100 | - | 1 | ns | | SYNC Setup Time from MCS6500 | TSYNC | 1 | | 350 | ns | | Address Hold Time | THA | 30 | 09 | - | ns | | R/W Hold Time | THRW | 30 | 09 | 1 | ns | ## Clock Timing - MCS6512, 13, 14, 15, 16 | CHARACTERISTIC | SYMBOL | MIN. | TYP. | MAX. | UNIT | |--|------------------|---------|------|------|------| | Cycle Time | TCYC | 200 | - | 1 | nsec | | Clock Pulse Width Ø1 (Measured at Vcc - 0.2v) Ø2 | PWH Ø1
PWH Ø2 | 215 235 | 1 | 1 | nsec | | (Measured from 0.2v to Vcc - 0.2v) | in its | | 1 | 12 | nsec | | Delay Time between Clocks
(Measured at 0.2v) | TD | 0 | | | nsec | # CLOCK TIMING - MCS6502, 03, 04, 05, 06 | CHARACTERISTIC | SYMBOL | MIN. | TYP. | MAX. | UNITS | |--|---------------------|-------------------------------|------|---|-------| | | TCYC | 200 | 1 | 1 | ns | | asured at 1.5V) | РИНФО | 240 | 1 | 260 | ns | | φ _{o(IN)} Rise, Fall Time | TR¢, TF¢ | i e | 1 | 10 | ns | | Delay Time Between Clocks (measured at 1.5V) | $^{T}_{\mathrm{D}}$ | 5 | 1 | 1 | ns | | φ ₁ (OUT) Pulse Width (measured at 1.5V) | РWНФ1 | $^{\rm PWH\phi}_{\rm oL}$ -20 | 1 | Тофнма | ns | | φ ₂ (OUT) Pulse Width (measured at 1.5V) | РWНФ2 | РWНф _{оН} -40 | 1 | $^{\mathrm{PWH}\phi}_{\mathrm{oH}}$ -10 | ns | | φ ₁ (OUT), φ ₂ (OUT) Rise, Fall Time
(measured .8V to 2.0 V) (Load = 30pf | TR, TF | - | 1 | 25 | ns | ### READ/WRITE TIMING | WHITE THE PARTY OF | | | | | | |--|--------|------|------|------|-------| | CHARACTERISTIC | SYMBOL | MIN. | TYP. | MAX. | UNITS | | Read/Write Setup Time from MCS6500A | TRWS | 1 | 100 | 150 | ns | | Address Setup Time from MCS6500A | TADS | 1 | 100 | 150 | ns | | Memory Read Access Time | TACC | 1 | | 300 | ns | | Data Stability Time Period | TDSU | 20 | - | - | ns | | Data Hold Time - Read | THR | 10 | 1 | 1 | ns | | Data Hold Time - Write | THW | 30 | 09 | 1 | ns | | Data Setup Time from MCS6500A | Typs | 1 | 7.5 | 100 | ns | | RDY, S.O. Setup Time | TRDY | 90 | 1 | 1 | ns | | SYNC Setup Time from MCS6500A | TSYNC | 1 | 1 | 175 | ns | | Address Hold Time | ТнА | 30 | 09 | | ns | | R/W Hold Time | Tube | 30 | 09 | 1 | ns | ### Clocks $(\emptyset_1, \emptyset_2)$ The MCS651X requires a two phase non-overlapping clock that runs at the Vcc voltage level. The MCS650X clocks are supplied with an internal clock generator. The frequency of these clocks is externally controlled. Details of this feature are discussed in the MCS6502 portion of this data sheet. Address Bus (A0-A15) (See sections on each micro for respective address lines on those devices.) These outputs are TTL compatible, capable of driving one standard TTL load and 130pf. ### Data Bus (D₀-D₇) Eight pins are used for the data bus. This is a bi-directional bus, transferring data to and from the device and peripherals. The outputs are tri-state buffers capable of driving one standard TTL load and 130pf. ### Data Bus Enable (DBE) This TTL compatible input allows external control of the tri-state data output buffers and will enable the microprocessor bus driver when in the high state. In normal operation DBE would be driven by the phase two (\emptyset_2) clock, thus allowing data output from microprocessor only during \emptyset_2 . During the read cycle, the data bus drivers are internally disabled, becoming essentially an open circuit. To disable data bus drivers externally, DBE should be held low. ### Ready (RDY) This input signal allows the user to single cycle the microprocessor on all cycles except write cycles. A negative transition to the low state during or coincident with phase one (\emptyset_1) will halt the microprocessor with the output address lines reflecting the current address being fetched. This condition will remain through a subsequent phase two (\emptyset_2) in which the Ready signal is low. This feature allows microprocessor interfacing with low speed PROMS as well as fast (max. 2 cycle) Direct Memory Access (DMA). If Ready is low during a write cycle, it is ignored until the following read operation. ### Interrupt Request (IRQ) This TTL level input requests that an interrupt sequence begin within the microprocessor. The microprocessor will complete the current instruction being executed before recognizing the request. At that time, the interrupt mask bit in the Status Code Register will be examined. If the interrupt mask flag is not set, the microprocessor will begin an interrupt sequence. The Program Counter and Processor Status Register are stored in the stack. The microprocessor will then set the interrupt mask flag high so that no further interrupts may occur. At the end of this cycle, the program counter low will be loaded from address FFFE, and program counter high from location FFFF, therefore transferring program control to the memory vector located at these addresses. The RDY signal must be in the high state for any interrupt to be recognized. A 3K Ω external resistor should be used for proper wire-OR operation. ### Non-Maskable Interrupt (NMI) A negative going edge on this input requests that a non-maskable interrupt sequence be generated within the microprocessor. NMI is an unconditional interrupt. Following completion of the current instruction, the sequence of operations defined for IRQ will be performed, regardless of the state interrupt mask flag. The vector address loaded into the program counter, low and high, are locations FFFA and FFFB respectively, thereby transferring program control to the memory vector located at these addresses. The instructions loaded at these locations cause the microprocessor to branch to a non-maskable interrupt routine in memory. $\overline{\text{NMI}}$ also requires an external $3\text{K}\Omega$ register to Vcc for proper wire-OR operations. Inputs $\overline{\text{IRQ}}$ and $\overline{\text{NMI}}$ are hardware interrupts lines that are sampled during \emptyset_2 (phase 2) and will begin the appropriate interrupt routine on the \emptyset_1 (phase 1) following the completion of the current instruction. ### Set Overflow Flag (S.O.) A NEGATIVE going edge on this input sets the overflow bit in the Status Code Register. This signal is sampled on the trailing edge of \emptyset_1 . ### SYNC This output line is provided to identify those cycles in which the microprocessor is doing an OP CODE fetch. The SYNC line goes high during \emptyset_1 of an OP CODE fetch and stays high for the remainder of that cycle. If the RDY line is pulled low during the \emptyset_1 clock pulse in which SYNC went high, the processor will stop in its current state and will remain in the state until the RDY line goes high. In this manner, the SYNC signal can be used to control RDY to cause single instruction execution. ### Reset This input is used to reset or start the microprocessor from a power down condition. During the time that this line is held low, writing to or from the microprocessor is inhibited. When a positive edge is detected on the input, the microprocessor will immediately begin the reset sequence. After a system initialization time of six clock cycles, the mask interrupt flag will be set and the microprocessor will load the program counter from the memory vector locations FFFC and FFFD. This is the start location for program control. After Vcc reaches 4.75 volts in a power up routine, reset must be held low for at least two clock cycles. At this time the R/W and (SYNC) signal will become valid. When the reset signal goes high following these two clock cycles, the microprocessor will proceed with the normal reset procedure detailed above. ### INSTRUCTION SET - ALPHABETIC SEQUENCE | AND | Shift left One Bit (Memory or Accumulator) | DEX | Decrement Memory by One Decrement Index X by One Decrement Index Y by One "Exclusive-or" Memory with Accumulator | PHA
PHP
PLA
PLP | Push Accumulator on Stack Push Processor Status on Stack Pull Accumulator from Stack Pull Processor Status from Stack | |--|--|--|--|---|---| | BCS
BEQ
BIT
BMI
BNE | Branch on Carry Set Branch on Result Zero Test Bits in Memory with Accumulator Branch on Result Minus Branch on Result not Zero | INC
INX
INY | Increment Memory by One
Increment Index X by One
Increment Index Y by One | ROL
ROR
RTI
RTS | Rotate One Bit Left (Memory or Accumulator) Rotate One Bit Right (Memory or Accumulator) Return from Interrupt Return from Subroutine | | BPL
BRK
BVC
BVS
CLC
CLD | Branch on Result Plus Force Break Branch on Overflow Clear Branch on Overflow Set Clear Carry Flag Clear Decimal Mode | JMP
JSR
LDA
LDX
LDY
LSR | Jump to New Location Jump to New Location Saving Return Address Load Accumulator with Memory Load Index X with Memory Load Index Y with Memory Shift One Bit Right (Memory or Accumulator) | SBC
SEC
SED
SEI
STA
STX
STY | Set Decimal Mode Set Interrupt Disable Status Store Accumulator in Memory Store Index X in Memory | | CLI
CLV
CMP
CPX
CPY | Clear Interrupt Disable Bit Clear Overflow Flag Compare Memory and Accumulator Compare Memory and Index X Compare Memory and Index Y | | No Operation "OR Memory with Accumulator | TAX
TAY
TSX
TXA
TXS
TYA | Transfer Accumulator to Index X Transfer Accumulator to Index Y Transfer Stack Pointer to Index X Transfer Index X to Accumulator Transfer Index X to Stack Pointer Transfer Index Y to Accumulator | ### **ADDRESSING MODES** - ACCUMULATOR ADDRESSING This form of addressing is represented with a one byte instruction, implying an operation on the accumulator. - IMMEDIATE ADDRESSING In immediate addressing, the operand is contained in the second byte of the instruction, with no further memory addressing required. - ABSOLUTE ADDRESSING In absolute addressing, the second byte of the instruction specifies the eight low order bits of the effective address while the third byte specifies the eight high order bits. Thus, the absolute addressing mode allows access to the entire 65K bytes of addressable memory. - ZERO PAGE ADDRESSING The zero page instructions allow for shorter code and execution times by only fetching the second byte of the instruction and assuming a zero high address byte. Careful use of the zero page can result in significant increase in code efficiency. - INDEXED ZERO PAGE ADDRESSING (X, Y indexing) This form of addressing is used in conjunction with the index register and is referred to as "Zero Page, X" or "Zero Page, Y". The effective address is calculated by adding the second byte to the contents of the index register. Since this is a form of "Zero Page" addressing, the content of the second byte references a location in page zero. Additionally due to the "Zero Page" addressing nature of this mode, no carry is added to the high order 8 bits of memory and crossing of page boundaries does not occur. - INDEXED ABSOLUTE ADDRESSING (X, Y indexing) This form of addressing is used in conjunction with X and Y index register and is referred to as "Absolute, X", and "Absolute, Y". The effective address is formed by adding the contents of X or Y to the address contained in the second and third bytes of the instruction. This mode allows the index register to contain the index or count value and the instruction to contain the base address. This type of indexing allows any location referencing and the index to modify multiple fields resulting in reduced coding and execution time. - IMPLIED ADDRESSING In the implied addressing mode, the address containing the operand is implicitly stated in the operation code of the instruction. - RELATIVE ADDRESSING Relative addressing is used only with branch instructions and establishes a destination for the conditional branch. - The second byte of the instruction becomes the operand which is an "Offset" added to the contents of the lower eight bits of the program counter when the counter is set at the next instruction. The range of the offset is -128 to +127 bytes from the next instruction. - INDEXED INDIRECT ADDRESSING In indexed indirect addressing (referred to as (Indirect,X)), the second byte of the instruction is added to the contents of the X index register, discarding the carry. The result of this addition points to a memory location on page zero whose contents is the low order eight bits of the effective address. The next memory location in page zero contains the high order eight bits of the effective address. Both memory locations specifying the high and low order bytes of the effective address must be in page zero. - INDIRECT INDEXED ADDRESSING In indirect indexed addressing (referred to as (Indirect),Y), the second byte of the instruction points to a memory location in page zero. The contents of this memory location is added to the contents of the Y index register, the result being the low order eight bits of the effective address. The carry from this addition is added to the contents of the next page zero memory location, the result being the high order eight bits of the effective address. - ABSOLUTE INDIRECT The second byte of the instruction contains the low order eight bits of a memory location. The high order eight bits of that memory location is contained in the third byte of the instruction. The contents of the fully specified memory location is the low order byte of the effective address. The next memory location contains the high order byte of the effective address which is loaded into the sixteen bits of the program counter. | 1810 | IIVOI | R | U | CT | | UI | 1 | SE | T | - | . (|)P | C | 01 | DE | S, | E | X | eci | uti | on | 1 | in | ne, | , 1 | le | | 01 | y | | - | | | 97 | 1 | | | | 1 | | | | | | |--|--|----------|------------------|-------|----------------------|-------------|---|----------------|---|---|------|-----|--|---|---|---------------|------|------|------|------|----------|----|-------|---------------|-------|-------|-----|------|----|---|------|-----|------|-----|----|----|-----|---|-----|---|---------------------|-----------------------------|-----|------| | 1149 | TRUCTIONS | | MEDIA | | | | | | PAGI | | ACC | | | APLIE | | | D,X) | | |),Y | | | | AB | | _ | ABS | | | | _ | _ | HREC | _ | _ | _ | _ | _ | | 0.50 | - | TION | | GADI | | NEMONIC | OPERATION | _ | _ | _ | | _ | | | N # | _ | PN | # | OP | N | # | OP | N F | 1 0 | PN | # | OP | N | # | OP N | # | 08 | PN | # | OP | N | # | OP | N | # | OP | N | 4 3 | # | N | 2 | С | | - (| _ | | DC | A+M+C + A (4) (1) | 1 | | | | | | | | - | T | Т | | | | | | | | 2 | | | | - | | | | 1990 | | | | | | | | | | | 120 | | | | | | | ND | AAM+A (1) | 29 | 2 | | | | | | 3 2 | - 1 | | | | | | 21 | 6 | 2 3 | 1 5 | 2 | | | | | | | 4 | 13 | | | | | | | | | | | | | | | | | | SL | Ce(T_Dell | | | | ØE. | 6 | 3 0 | 6 5 | 5 2 | 0 | A : | 2 1 | | | | | - | | | | 16 | 6 | 2 | 1E | / 3 | 1 | 1 | 1 | | | | | - | | | 1 | + | | | 4 | | - | | | | CC | BRANCH ON C=Ø (2) | | | | | | | | | | | | | | | | | Т | | П | | | | | | | | | 1 | 2 | | | | | | L | 1 | | | | | | | | | CS | BRANCH ON C=1 (2) | - | | | | | - | + | + | + | + | - | - | | | | + | + | + | + | | | | | + | + | + | + | - | 2 | | | | | - | + | + | - | | | | | | | | EQ | BRANCH ON 2=1 (2) | | | | | 40 | | | | | | | | | | | al | | | | | | | | | | | | 1 | - | - | | | | | 1 | 1 | | M. | , | | | | N | | IT | AAM | | | | 2C | 4 | 3 2 | 4 3 | 3 2 | | 1 | | | | | | | | | Н | | | | 19 | | | | | 30 | 2 | 2 | | | | | 1 | | | - | | | | | | | MI | BRANCH ON N=1 (2) | 1 | 2 | | | | | | | | | - | - | | | | | | NE | BRANCH ON Z-Ø (2)
BRANCH ON N-Ø (2) | 1 | | | | | | | | 1 | 1 | | | | | | | | | | | | | | | | | | 10 | 2 | 2 | | | | | | | | - | - | - | | - | | | RK | (See Fig. 1) | + | \vdash | | | | + | + | + | + | + | | 00 | 7 | 1 | | | + | | + | | | | | + | | t | | | | | | | | T | T | | | - | - | | - | | | | | BRANCH ON V=0 (2) | | | | | | | | | 1 | 1 | | | | | | -1 | | | | | | | | | | 1 | | 50 | 2 | 2 | | | | | | | | - | - | - | | | -/- | | | BRANCH ON V=1 (2) | | | | | | | | | I | ı | Т | | | | | - 1 | | | | | | | | | | ۱ | | 70 | 2 | 2 | | | | ı | | | | - | - | | | - | | | | 0 + C | | | | | | | | | | | 1 | 18 | 2 | 1 | L | | | | - | - | - (| 0 - | - | 5.0 | | | 0 + D | | | | | | | | | | | | 08 | 2 | 1 | | 19 | | | | | | | | | | | | | | | | | | | 1 | | | - | - | - | | | 0 - | | | 0+1 | | | | | | | | | 1 | | | 58 | 2 | 1 | - | | - | | 0 - | | | | 0 + V | | | | | | | | | | | | 88 | 2 | | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | | M P | A-M (1) | CS | 2 | 2 | CD | 4 | 3 (| 25 | 3 2 | 2 | | | | | | C1 | 6 | 2 0 | 01 1 | 5 2 | D5 | 4 | 2 | DD | 4 | 3 D | 9 | 3 | | | | 1 | | | | | | | | | | - | | | | PX | X-M | EQ | 2 | 2 | EC | 4 | 3 | 4 | 3 2 | 2 | - | | | | | Y-M | CØ | 2 | 2 | cc | 4 | 3 (| 24 | 3 2 | 2 | | | | | | | | 1 | | | | | To se | | | | | | - | - | | - | | | + | - | - | | | | | / - | | | | EC | M−1 → M | | | | CE | 6 | 3 (| 36 | 5 | 2 | | | | | | | | | | Ŧ | D6 | 6 | 2 | DE | 7 | 3 | ı | | | | | | | | ı | | 1 | | | | | | | | | | X-1 + X | | | | | | | | A | 1 | | | CA | | | | | | | н | | | | | | | | | | | | | | | | | 1 | | 100 | | | | | | | | Y-1 + Y | | | 13 | free. | | HM. | | | | | Т | 88 | | | | | | | 2 | 100 | ١. | - | En | | 2 5 | | 1 | | | | | | | ı | | | | 100 | | | | | | | | | 49 | 2 | | | 100 | - | 830 | 3 | | | 1 | | | | 41 | 6 | 2 5 | 1 5 | 12 | 190% | | 1000 | FE | | | 3 | 1 | | | | | | | | | | | | | | | | | | | M+1+M | + | + | - | EE | 6 | 3 | :6 | 5 | 2 | + | + | 50 | 2 | 1 | | | - | + | + | 100 | 0 | - | FE | - | + | + | | + | + | | | | | + | + | + | | | _ | - | | _ | _ | | NX | X+1 + X | | | | | | | | | | 1 | | | 2 | 1 | | | | | П | | | | | | | ı | | | | | | | | ı | | 1 | | | | | 500 | | | | NY | Y+1 + Y | | | | 4C | 2 | 2 | | | | 1 | | 100 | 1 | 1 | | | | | П | | | | | | | | | | | | 60 | 5 | 3 | ı | | 1 | | | | | | | | | MP | JUMP TO NEW LOC.
(See Fig. 2) JUMP SUB | | | | 28 | I | | | - | | | | | | | SA | | A | 9 2 | 2 | AD | | | A5 | 3 | 2 | 4 | | | | | A1 | 6 | 2 1 | B1 | 5 2 | 85 | 4 | 2 | BD | 4 | 3 8 | 9 | 4 3 | | | | | | | L | | | | 1 | | - | | | | | DA | | _ | - | | - | | _ | | | - | _ | | 1 | | | | | | | | | | | | | - | | | Ta | | | _ | | | 1 | | | | 1 | 00 | ND | ITIC | N C | on | | | | | | | | | _ | | PAGE | _ | ACC | | _ | PLIE | _ | $\overline{}$ | X,DI | _ | _ | D),Y | - | _ | | $\overline{}$ | 85, X | _ | - | 5, Y | - | - | TIVE | + | DIRI | _ | - | _ | | _ | + | - | - | C | - | - | | ONIC | | _ | | _ | | - | - | _ | N # | - |)P N | # | OP | N | # | OP | N | # 10 | JP N | # | OP | N. | ** | OP | N · | _ | _ | 4 3 | | | " | 0 | 100 | - | | | | 2 | - | _ | - | _ | _ | _ | | 0.000 | | | 100 | | 1239 | | | | 3 2 | | 1 | | | | | | | | | | BA | | 2 | BC | | | - | | | 1 | | | | | | | | 1 | | | | | | | | | | AW | 2 | | 1350 | | 100 | 59 | 5 2 | | | | | | | | | | | | | | | 5E | | | 1 | | | | | | | | ı | 1 | | | 10 | | | , | | | | SR | g+(T)+C | | | | 46 | 6 | 3 9 | 0 0 | , , | 1 | 1 | 1 | EA | 2 | | | | | | | 30 | 0 | - | - | | | П | | | L | | | | | | | | | - | | _ | - | - | - | | OP | NO OPERATION | | 2 | 2 | an | | 2 0 | | 2 3 | | | | E.A. | 1 | | 0.1 | 6 | 2 1 | 1 . | 5 2 | 15 | 4 | 2 | 1D | 4 | 3 1 | 9 | 1 3 | | | | | | | | | | | 1 | 1 | į. | _ | - | - | | | AWM - A | 00 | - | * | 00 | * | 2 6 | 9 | 3 4 | + | + | + | 49 | 3 | - | - | - | - | | | 15 | | - | | | | | | + | t | | t | | | + | 1 | | | 1- | | - | + | - | - | | RA | | 09 | | | | - | | | | | | | 100 | 100 | | | | | | | | | | | | | 1 | | | | | | | | | | | | - | | - | - | - | - | | RA | A Ms S-1 S | 09 | | | | | | - | | - 1 | | | 0.8 | 1 3 | 1 1 | | | | | | | 1 | | | | | | | | | | | | ı | | | | | 1 | 1 | | | | | | R A
H A
H P | A Ms S-1 S
P Ms S-1 S | 09 | | | | | | | | ı | | | 100 | 4 | 1 | | | | ١ | | | ı | | | | | | | | | | | | | | | | | _ | | / | - | - | - | | R A
H A
H P
L A | A→ M ₅ S-1→ S
P→ M ₅ S-1→ S
S+1→ S M ₅ → A | 09 | | | | | | 2 | | | | | 68 | 4 | | | | | | | | | | | | | | ı | | | | | | | | | | | | | | EST | | | | R A
H A
H P
L A
L P | A→ Ms S-1→S P→ Ms S-1→S S+1→S Ms→A S+1→S Ms→P | 09 | | | 2€ | 6 | 3 2 | 6 | 5 2 | 2 2 | A | 2 1 | 68
28 | 4 | 1 | | | | | | 36 | 6 | 2 | JE. | 7 | 3 | | | | | | | | | | | | | - | , | (RE | EST | DRE | 0) | | R A
H P
L A
L P | A-Ms S-1-S P-Ms S-1-S S+1-S Ms-A S+1-S Ms-P | 09 | | _ | | - | - | - | | - | - | - | 68
28 | 4 | 1 | | | | | | 1 | - | | 3E
7E | | - | | | | | | | | | - | | | | - | , | (RE | EST | DRE | 0) | | RA HP LA LP OL | A→ M ₅ S-1→ S
P→ M ₅ S-1→ S
S+1→ S M ₅ → A
S+1→ S M ₅ → P | 09 | | _ | | - | - | - | 5 2 | - | - | - | 68
28 | 4 | 1 | | | | | | 1 | - | | | | - | | | | | | | | | | | | | - | , | (RE | EST | DRE | 0) | | RA HP LA LP O L | A-Ms S-1-S P-Ms S-1-S S+1-S Ms-A S+1-S Ms-P | 09 | | _ | | - | - | - | | - | - | - | 68
28 | 4 4 6 | 1 | | | | | | 1 | - | | | | - | | | | | | | | | | | | | - | - | (RE | Z
Z
EST | ORE | D) | | RA
HP
LA
LP
OL
OR
TI | A→ M ₅ S-1→ S
P→ M ₅ S-1→ S
S+1→ S M ₅ → A
S+1→ S M ₅ → P | | | | 6E | 6 | 3 (| 66 | 5 2 | 2 6 | - | - | 68
28 | 4 4 6 | 1 1 1 1 | | 6 | 2 | F1 | 5 2 | 76 | 6 | 2 | 76 | 7 | 3 | F9 | 4 | 3 | | | | | | | | | | - | - | (RE | /
/
EST | ORE | D) | | RA HP LA LP OR TI | A-Ms S-1-S P-Ms S-1-S S+1-S Ms-A S+1-S Ms-P | | | | 6E | 6 | 3 (| 66 | 5 2 | 2 6 | - | - | 68
28
49
60 | 4 4 6 | 1 1 1 1 | | 6 | 2 | F1 | 5 2 | 76 | 6 | 2 | 76 | 7 | 3 | F9 | 4 | 3 | | | | | | | | | | | , , , , , | (RE | EST
/
EST
-
(3) | ORE | D) | | RA HA HP LA LP OL TI TS BC EC | A — Ms S-1—S P — Ms S-1—S S+1—S Ms—A S+1—S Ms—P (See Fig. 1) RTRN INT (See Fig. 2) RTRN SUB | | | | 6E | 6 | 3 (| 66 | 5 2 | 2 6 | - | - | 68
28
49
69 | 4 4 6 6 | 1 1 1 1 | | 6 | 2 | F1 | 5 2 | 76 | 6 | 2 | 76 | 7 | 3 | F9 | 4 | | | | | | | | | | | | , , , , , | (RE | /
/
EST
-
(3) | ORE | (D) | | RA HA HP LA LP OL OR TI TS BC EC | A-Ms S-1-S P-Ms S-1-S S+1-S Ms-A S+1-S Ms-P | | | | 6E | 6 | 3 (| 66 | 5 2 | 2 6 | - | - | 68
28
40
60
38
F8 | 6 6 | 1 1 1 1 1 | | 6 | 2 | F1 | 5 2 | 76 | 6 | 2 | 76 | 7 | 3 | F9 | 4 | 3 | | | | | | | | | | | , , , , , | (RE | /
/
EST
-
(3) | ORE | (D) | | RA HA HP LA LP OL TS BC EC | A→ Ms S-1→S P→ Ms S-1→S S+1→S Ms→A S+1→S Ms→P | | | 2 | 6E
ED | 6 | 3 (| 66 | 5 2 | 2 6 | - | - | 68
28
40
60
38
F8 | 6 6 2 2 | 1 1 1 1 1 | EI | | | - | 6 2 | 76
F5 | 4 | 2 | 7E
FD | 7 | 3 1 | | 1 | + | | | | | | | | | | | , , , , , | (RE | /
/
EST
-
(3) | ORE | (D) | | RA HA HP LA LP OR TI TS BC EC ED TA | A-Ms S-1-S P-Ms S-1-S S+1-S Ms-A S+1-S Ms-P | | | 2 | 6E
ED | 4 | 3 (| 66 | 3 2 | 2 6 | - | - | 68
28
40
60
38
F8 | 6 6 2 2 | 1 1 1 1 1 | EI | | | - | | 76
F5 | 4 | 2 | 7E
FD | 7 | 3 1 | | 1 | + | | | | | | | 96 | 4 | 2 | | , , , , , | (RE | /
/
EST
-
(3) | ORE | (D) | | RA HP LA LP OL OR TI TS BC ED EI TA TX | A→ Ms S-1→S P→ Ms S-1→S S+1→S Ms→A S+1→S Ms→P | | | 2 | 6E
ED
80
8E | 4 4 4 | 3 (| 86
85
86 | 3 3 | 2 6 | - | - | 68
28
40
60
38
F8 | 6 6 2 2 | 1 1 1 1 1 | EI | | 2 | - | | 76
F5 | 4 | 2 | 7E
FD | 7 | 3 1 | | 1 | + | | | | | | | 96 | 4 | 2 | 2 | , | (RE J J (R - J | EST(| ORE | (D) | | RA HA HP LA LP OR TI TS BC EC ED TA TY | A→ Ms S-1→S P→ Ms S-1→S S+1→S Ms→A S+1→S Ms→P | | | 2 | 6E
ED
80
8E | 4 4 4 | 3 (| 86
85
86 | 3 3 3 3 3 3 | 2 6 | - | - | 68
28
40
60
38
F8 | 4 4 6 6 2 2 2 2 | 1 1 1 1 1 | EI | | 2 | - | | 76
F5 | 4 | 2 | 7E
FD | 7 | 3 1 | | 1 | + | | | | | | | 96 | 4 | 2 | 2 | , | (RE) (R -) / | / / EST - (3) | ORE | (D) | | RA HA HP LA LP OL OR TI TS EC ED TA TY AX | A — Ms S-1—S P — Ms S-1—S S+1—S Ms—A S+1—S Ms—P — T 0—C— (See Fig. 1) RTRN INT. (See Fig. 2) RTRN SUB A-M-Č — A (1) 1 + C 1 + D 1 + I A + M X + M Y + M. | | | 2 | 6E
ED
80
8E | 4 4 4 | 3 (| 86
85
86 | 3 3 3 3 3 3 | 2 6 | - | - | 68
28
40
60
38
F8
78 | 4
4
6
6
2
2
2 | 1 1 1 1 1 1 1 | EI | | 2 | - | | 76
F5 | 4 | 2 | 7E
FD | 7 | 3 1 | | 1 | + | | | | | | | 96 | 4 | 2 | 2 | , , , , , , , , , , | (RE / / R - / / / / | / EST - (3) | ORE | (D) | | RA HA HP LA LP OL TS BC ED TA TY AX AY | A→ Ms S-1→S P→ Ms S-1→S S+1→S Ms→A S+1→S Ms→P | | | 2 | 6E
ED
80
8E | 4 4 4 | 3 (| 86
85
86 | 3 3 3 3 3 3 | 2 6 | - | - | 68
28
40
60
38
F8
78 | 4 4 6 6 2 2 2 2 2 | 1 1 1 1 1 1 | E1 | | 2 | - | | 76
F5 | 4 | 2 | 7E
FD | 7 | 3 1 | | 1 | + | | | | | | | 96 | 4 | 2 | 2 | , , , , , , , , , , | (RE / / R - / / / / | (3) | ORE | D) | | RA HA HP LA LP OL OR TI TS BC ED TA TX TY AX AY SX | A Ms S-1S P Ms S-1S S+1S MsA S+1S MsP | | | 2 | 6E
ED
80
8E | 4 4 4 | 3 (| 86
85
86 | 3 3 3 3 3 3 | 2 6 | - | - | 68
28
40
60
38
F8
78 | 4 4 6 6 2 2 2 2 2 2 2 2 2 2 | 1 1 1 1 1 1 1 | E1 | | 2 | - | | 76
F5 | 4 | 2 | 7E
FD | 7 | 3 1 | | 1 | + | | | | | | | 96 | 4 | 2 | 2 | , | (RE) (R -) | (3) | ORE | (D) | | RA HA HP LA LP OR TIS BC ED EI TX TX AY SX A | A Ms S-1S P Ms S-1S S+1S MsA S+1S MsP | | | 2 | 6E
ED
80
8E | 4 4 4 | 3 (| 86
85
86 | 3 3 3 3 3 3 | 2 6 | - | - | 68
28
40
60
38
78
AA
AA
AA
AA
BAA | 4 4 6 6 6 2 2 2 2 2 2 2 2 2 2 | 1 1 1 1 1 1 1 1 1 | 81 | | 2 | - | | 76
F5 | 4 | 2 | 7E
FD | 7 | 3 1 | | 1 | + | | | | | | | 96 | 4 | 2 | 2 | , | (RE) (R -) | (3) | ORE | D) 1 | | RA HA HP LA LP OR TI TS BC ED TA TX TY AX AY SX XS | A→ Ms S-1→S P→ Ms S-1→S S+1→S Ms→A S+1→S Ms→P | | | 2 | 6E
ED
80
8E | 4 4 4 | 3 (| 86
85
86 | 3 3 3 3 3 3 | 2 6 | - | - | 68
28
40
60
38
78
AA
AA
AA
AA
BAA | 4 4 6 6 2 2 2 2 2 2 2 2 | 1 1 1 1 1 1 1 1 1 1 | 81 | | 2 | - | | 76
F5 | 4 | 2 | 7E
FD | 7 | 3 1 | | 1 | + | | | | | | | 96 | 4 | 2 | 2 | , | (RE) (R -) | (3) | ORE | D) 1 | | RA HA HP LA LP OL OR TI TS BC ED TA TY AX AY SX XA | A-Ms S-1-S P-Ms S-1-S S+1-S Ms-A S+1-S Ms-P | E9 | 2
UNIC | 2 | BD BE BC | 6 4 4 4 4 4 | 3 6 3 6 3 8 3 3 1 1 3 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 | 66 H5 H5 D | 3 | 2 6 | - | - | 68
28
40
60
38
78
78
AA
AA
AA
AA
BA
BA
BA
BA
BA
BA
BA
BA
BA | 4 4 6 6 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 1 1 1 1 1 1 1 1 1 1 | 81 | | 2 | - | | 76
F5 | 4 | 2 | 7E
FD | 7 | 3 1 | | 1 | + | - | | EXC | LUS | IVE | | | 4 | 2 | 2 N | , , , , , , , , , , , , , , , , , , , | (RE J R - J | (3) | ORE | D) 1 | | RA HA HP LA LP OL OR TI TS BC ED EI TX TY AX AX XA XA XA XA XA | A-Ms S-1-S P-Ms S-1-S S+1-S Ms-A S+1-S Ms-P | 80
CH | 2
UNIT
OCC | 2 DRY | 6E ED 80 8E 8C | 6 4 4 4 4 4 | 3 8 3 8 3 3 1 1 3 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 | D PAC | 5 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 2 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | SA. | - | 68 28 40 60 38 F8 78 AA AB AA 9A 9A 98 | 4
4
4
6
6
2
2
2
2
2
1
1
2
2
1
1
1
1
1
1
1
1
1 | 1 | E1 81 | | 2 | - | | 76
F5 | 4 | 2 | 7E
FD | 7 | 3 3 4 | | 1 | + | | | MOD | LUSI | D | OR | 4 | 4 | 2 | 2 N | , , , , , , , , , , , , , , , , , , , | (RE J R - J | (3) | ORE | D) 1 | ### MCS6502 - 40 Pin Package ``` 40- RES RDY - 2 39- Ø2(OUT) Ø1(OUT) - 3 38 - S.O. IRQ -4 37 - ØO(IN) N.C. - 5 36- N.C. 35 - N. C. NMI-6 SYNC-7 34- R/W Vcc - 8 33- DBO AB0 - 9 32 - DBI AB1 -10 31 - DB2 AB2-11 30 - DB3 AB3-12 29-DB4 AB4-13 28-DB5 AB5-14 27-DB6 AB6-15 26-DB7 AB7-16 25- ABI5 AB8-17 24- AB14 AB9-18 23- AB13 ABIO-19 22- ABI2 AB11-20 21- Vss MCS6502 ``` - * 65K Addressable Bytes of Memory - * IRQ Interrupt - * NMI Interrupt - * On-the-chip Clock - √ TTL Level Single Phase Input - √ RC Time Base Input - √ Crystal Time Base Input - * SYNC Signal (can be used for single instruction execution) * RDY Signal (can be used for single cycle execution) - * Two Phase Output Clock for Timing of Support Chips Features of MCS6502 ### MCS6503 - 28 Pin Package ``` RES-I 28- Ø2(OUT) Vss - 2 27- Ø0(IN) IRQ - 3 26-R/W NMI-4 25 - DBO Vcc - 5 24 - DBI ABO - 6 23- DB2 ABI - 7 22- DB3 21 - DB4 AB2 - 8 AB3-9 20- DB5 AB4-10 19- DB6 AB5 -11 18- DB7 AB6 -12 17 - ABII AB7 -13 16- AB10 AB8 -14 15- AB9 MCS6503 ``` - * 4K Addressable Bytes of Memory (ABOO-AB11) - * On-the-chip Clock - * IRQ Interrupt - * NMI Interrupt - * 8 Bit Bi-Directional Data Bus Features of MCS6503 ### MCS6504 - 28 Pin Package - * 8K Addressable Bytes of Memory (AB00-AB12) - * On-the-chip Clock - * IRQ Interrupt - * 8 Bit Bi-Directional Data Bus Features of MCS6504 ### MCS6505 - 28 Pin Package ``` 28- Ø2(OUT) RES - I 27 - ØO(IN) Vss -2 RDY - 3 26 - R/W 25 - DBO IRQ -4 Vcc - 5 24 - DBI ABO - 6 23 - DB2 ABI - 7 22 - DB3 AB2-8 21-DB4 AB3 - 9 20 - DB5 AB4-10 19- DB6 AB5-11 18- DB7 17 - ABII AB6 - 12 16 - AB10 AB7-13 AB8-14 15- AB9 MCS6505 ``` - * 4K Addressable Bytes of Memory (AB00-AB11) - * On-the-chip Clock - * IRQ Interrupt - * RDY Signal - * 8 Bit Bi-Directional Data Bus Features of MCS6505 ### MCS6506 - 28 Pin Package - * 4K Addressable Bytes of Memory (AB00-AB11) - * On-the-chip Clock - * IRQ Interrupt - * Two phases off - * 8 Bit Bi-Directional Data Bus Features of MCS6506 ### MCS6512 - 40 Pin Package - * 65K Addressable Bytes of Memory - * TRQ Interrupt - * NMI Interrupt - * RDY Signal - * 8 Bit Bi-Directional Data Bus - * SYNC Signal - * Two phase input - * Data Bus Enable Features of MCS6512 ### MCS6513 - 28 Pin Package ``` Vss - | 28 - RES Ø_| - 2 27 - Ø₂ IRQ - 3 26 - R/W NMI - 4 25 - DBO Vcc - 5 24 - DBI ABO - 6 23 - DB2 ABI - 7 22 - DB3 AB2 - 8 21 - DB4 AB3 - 9 20 - DB5 AB4 - | 10 19 - DB6 AB5 - | 11 18 - DB7 AB6 - | 12 17 - ABII AB7 - | 13 16 - ABIO AB8 - | 14 15 - AB9 ``` - * 4K Addressable Bytes of Memory (AB00-AB11) - * Two phase clock input - * TRQ Interrupt - * NMI Interrupt - * 8 Bit Bi-Directional Data Bus Features of MCS6513 ### MCS6514 - 28 Pin Package ``` Vss - I 28 - RES Ø₁ - 2 27 - Ø₂ IRQ - 3 26 - R/W Vcc - 4 25 - DBO ABO - 5 24 - DBI ABI - 6 23 - DB2 AB2 - 7 22 - DB3 AB3 - 8 21 - DB4 AB4 - 9 20 - DB5 AB5 - IO 19 - DB6 AB6 - II 18 - DB7 AB7 - I2 17 - ABI2 AB8 - I3 16 - ABII AB9 - I4 15 - ABIO ``` - * 8K Addressable Bytes of Memory (AB00-AB12) - * Two phase clock input - * IRQ Interrupt - * 8 Bit Bi-Directional Data Bus Features of MCS6514 ### MCS6515 - 28 Pin Package - * 4K Addressable Bytes of Memory (AB00-AB11) - * Two phase clock input - * TRQ Interrupt - * 8 Bit Bi-Directional Data Bus Features of MCS6515 ### MCS6502 MCS6502 Parallel Mode Crystal Controlled Oscillator MCS6502 Series Mode Crystal Controlled Oscillator MCS6502 Time Base Generator - RC Network # MCS6503, MCS6504, MCS6505, MCS6506 MCS6503, 4, 5, 6 Parallel Mode Crystal Controlled Oscillator MCS6503, 4, 5, 6 Series Mode Crystal Controlled Oscillator MCS6503, MCS6504, MCS6505, MCS6506 Time Base Generation RC Network